2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tissue-Engineered Tubular Heart Valves Combining a Novel Precontraction Phase with the Self-Assembly Method

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 32

          • Record: found
          • Abstract: found
          • Article: not found

          Functional living trileaflet heart valves grown in vitro.

          Previous tissue engineering approaches to create heart valves have been limited by the structural immaturity and mechanical properties of the valve constructs. This study used an in vitro pulse duplicator system to provide a biomimetic environment during tissue formation to yield more mature implantable heart valves derived from autologous tissue. Trileaflet heart valves were fabricated from novel bioabsorbable polymers and sequentially seeded with autologous ovine myofibroblasts and endothelial cells. The constructs were grown for 14 days in a pulse duplicator in vitro system under gradually increasing flow and pressure conditions. By use of cardiopulmonary bypass, the native pulmonary leaflets were resected, and the valve constructs were implanted into 6 lambs (weight 19+/-2.8 kg). All animals had uneventful postoperative courses, and the valves were explanted at 1 day and at 4, 6, 8, 16, and 20 weeks. Echocardiography demonstrated mobile functioning leaflets without stenosis, thrombus, or aneurysm up to 20 weeks. Histology (16 and 20 weeks) showed uniform layered cuspal tissue with endothelium. Environmental scanning electron microscopy revealed a confluent smooth valvular surface. Mechanical properties were comparable to those of native tissue at 20 weeks. Complete degradation of the polymers occurred by 8 weeks. Extracellular matrix content (collagen, glycosaminoglycans, and elastin) and DNA content increased to levels of native tissue and higher at 20 weeks. This study demonstrates in vitro generation of implantable complete living heart valves based on a biomimetic flow culture system. These autologous tissue-engineered valves functioned up to 5 months and resembled normal heart valves in microstructure, mechanical properties, and extracellular matrix formation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A completely biological tissue-engineered human blood vessel

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model.

              Autologous fibrin-based tissue-engineered heart valves have demonstrated excellent potential as patient-derived valve replacements. The present pilot study aims to evaluate the structure and mechanical durability of fibrin-based heart valves after implantation in a large-animal model (sheep). Tissue-engineered heart valves were molded using a fibrin scaffold and autologous arterial-derived cells before 28 days of mechanical conditioning. Conditioned valves were subsequently implanted in the pulmonary trunk of the same animals from which the cells were harvested. After 3 months in vivo, explanted valve conduits (n = 4) had remained intact and exhibited native tissue consistency, although leaflets demonstrated insufficiency because of tissue contraction. Routine histology showed remarkable tissue development and cell distribution, along with functional blood vessel ingrowth. A confluent monolayer of endothelial cells was present on the valve surface, as evidenced by scanning electron microscopy and positive von Willebrand factor staining. Immunohistochemistry and extracellular matrix (ECM) assay demonstrated complete resorption of the fibrin scaffold and replacement with ECM proteins. Transmission electron microscopy revealed mature collagen formation and viable, active resident tissue cells. The preliminary findings of implanted fibrin-based tissue-engineered heart valves are encouraging, with excellent tissue remodeling and structural durability after 3 months in vivo. The results from this pilot study highlight the potential for construction of completely "autologous" customized tissue-engineered heart valves based on a patient-derived fibrin scaffold.
                Bookmark

                Author and article information

                Journal
                Annals of Biomedical Engineering
                Ann Biomed Eng
                Springer Science and Business Media LLC
                0090-6964
                1573-9686
                February 2017
                August 10 2016
                February 2017
                : 45
                : 2
                : 427-438
                Article
                10.1007/s10439-016-1708-1
                © 2017

                Comments

                Comment on this article