286
views
0
recommends
+1 Recommend
0 collections
    20
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

          Author Summary

          Cells with damaged DNA are at risk of becoming cancerous tumors. Although “cellular senescence” can suppress tumor formation from damaged cells by blocking the cell division that underlies cancer growth, it has also been implicated in promoting cancer and other age-related diseases. To understand how this might happen, we measured proteins that senescent human cells secrete into their local environment and found many factors associated with inflammation and cancer development. Different types of cells secrete a common set of proteins when they senesce. This senescence-associated secretory phenotype (SASP) occurs not only in cultured cells, but also in vivo in response to DNA-damaging chemotherapy. Normal cells that acquire a highly active mutant version of the RAS protein, which is known to contribute to tumor growth, undergo cellular senescence, and develop a very intense SASP, with higher levels of proteins secreted. Likewise, the SASP is more intense when cells lose the functions of the tumor suppressor p53. Senescent cells promote the growth and aggressiveness of nearby precancerous or cancer cells, and cells with a more intense SASP do so more efficiently. Our findings support the idea that cellular senescence can be both beneficial, in preventing damaged cells from dividing, and deleterious, by having effects on neighboring cells; this balance of effects is predicted by an evolutionary theory of aging.

          Abstract

          By controlling how damaged cells modify their surrounding tissue environment, a tumor suppressor gene can restrain, and an oncogene can promote, the development of cancer.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas.

          Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a.

            Oncogenic ras can transform most immortal rodent cells to a tumorigenic state. However, transformation of primary cells by ras requires either a cooperating oncogene or the inactivation of tumor suppressors such as p53 or p16. Here we show that expression of oncogenic ras in primary human or rodent cells results in a permanent G1 arrest. The arrest induced by ras is accompanied by accumulation of p53 and p16, and is phenotypically indistinguishable from cellular senescence. Inactivation of either p53 or p16 prevents ras-induced arrest in rodent cells, and E1A achieves a similar effect in human cells. These observations suggest that the onset of cellular senescence does not simply reflect the accumulation of cell divisions, but can be prematurely activated in response to an oncogenic stimulus. Negation of ras-induced senescence may be relevant during multistep tumorigenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemokine signaling via the CXCR2 receptor reinforces senescence.

              Cells enter senescence, a state of stable proliferative arrest, in response to a variety of cellular stresses, including telomere erosion, DNA damage, and oncogenic signaling, which acts as a barrier against malignant transformation in vivo. To identify genes controlling senescence, we conducted an unbiased screen for small hairpin RNAs that extend the life span of primary human fibroblasts. Here, we report that knocking down the chemokine receptor CXCR2 (IL8RB) alleviates both replicative and oncogene-induced senescence (OIS) and diminishes the DNA-damage response. Conversely, ectopic expression of CXCR2 results in premature senescence via a p53-dependent mechanism. Cells undergoing OIS secrete multiple CXCR2-binding chemokines in a program that is regulated by the NF-kappaB and C/EBPbeta transcription factors and coordinately induce CXCR2 expression. CXCR2 upregulation is also observed in preneoplastic lesions in vivo. These results suggest that senescent cells activate a self-amplifying secretory network in which CXCR2-binding chemokines reinforce growth arrest.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                plbi
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                December 2008
                2 December 2008
                : 6
                : 12
                : e301
                Affiliations
                [1 ] Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
                [2 ] Buck Institute for Age Research, Novato, California, United States of America
                [3 ] Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
                [4 ] California Pacific Medical Center Research Institute, San Francisco, California, United States of America
                Cancer Research UK, United Kingdom
                Author notes
                * To whom correspondence should be addressed. E-mail: jcampisi@ 123456lbl.gov
                Article
                08-PLBI-RA-2566R3 plbi-06-12-02
                10.1371/journal.pbio.0060301
                2592359
                19053174
                db88f3ce-9a96-45b0-951d-253e912382f1
                Copyright: © 2008 Coppé et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 June 2008
                : 22 October 2008
                Page count
                Pages: 1
                Categories
                Research Article
                Biotechnology
                Cell Biology
                Developmental Biology
                Evolutionary Biology
                Immunology
                Molecular Biology
                Oncology
                Custom metadata
                Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, et al. (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12): e301. doi: 10.1371/journal.pbio.0060301

                Life sciences
                Life sciences

                Comments

                Comment on this article