10
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Biodegradable Multi-layered Silk Fibroin-PCL Stent for the Management of Cervical Atresia: In Vitro Cytocompatibility and Extracellular Matrix Remodeling In Vivo.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cervical atresia is a rare congenital Müllerian duct anomaly that manifests as the absence or deformed nonfunctional presence of the cervix. Herein, a multi-layered biodegradable stent is fabricated using a homogeneous blend of silk fibroin with polycaprolactone using hexafluoroisopropanol as a common solution. Briefly, a concentric cylinder of 3D honeycomb layer is sandwiched within electrospun sheets for fixing at the cervico-uterine junction to pave the way of cervical reconstruction. An average length of 40 mm with 3 mm diameter is fabricated for the hybrid stent design. SEM evidences an evenly distributed pore architecture of the electrospun layer, and mechanical characterization of stent reveals a tensile strength of 1.7 ± 0.2 MPa, with a Young's modulus of 5.9 ± 0.1 MPa. Physico-chemical characterization confirms the presence of silk fibroin and poly caprolactone within the engineered stent. Following 14 days of pepsin enzymatic degradation, 18% degradation and a contact angle measurement of 97° are observed. In vitro cytocompatibility studies are performed using site-specific primary human cervical squamous, columnar epithelial cells, and human endometrial stromal cells. The study demonstrates non-cytotoxic cells' viability (no significant toxicity), improved cell anchoring, adherence among the stent layers, and proliferation in the 3D microenvironment. Furthermore, in vivo subcutaneous studies in the rodent model indicate that the implanted stent undergoes constructive remodeling, neo-tissue creation, neo-vasculature formation, and re-epithelialization while maintaining patency for 2 months.

          Related collections

          Author and article information

          Journal
          ACS Appl Mater Interfaces
          ACS applied materials & interfaces
          American Chemical Society (ACS)
          1944-8252
          1944-8244
          Aug 23 2023
          : 15
          : 33
          Affiliations
          [1 ] School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
          [2 ] School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
          [3 ] Institute of Reproductive Medicine, Salt Lake 700106, Kolkata, India.
          Article
          10.1021/acsami.3c06585
          37579196
          db89f832-d11b-41c2-86e7-3b7c7d62cf6a
          History

          3D printing,ECM remodeling,cervical atresia,electrospinning,stent

          Comments

          Comment on this article

          Related Documents Log