42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The (neuro)cognitive mechanisms behind attention bias modification in anxiety: proposals based on theoretical accounts of attentional bias

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, researchers have investigated the causal nature of attentional bias for threat (AB) in the maintenance of anxiety disorders by experimentally manipulating it. They found that training anxious individuals to attend to non-threat stimuli reduces AB, which, in turn, reduces anxiety. This effect supports the hypothesis that AB can causally impact the maintenance of anxiety. At a fundamental level, however, uncertainty still abounds regarding the nature of the processes that mediate this effect. In the present paper, we propose that two contrasting approaches may be derived from theoretical accounts of AB. According to a first class of models, called the “valence-specific bias” models, modifying AB requires the modification of valence-specific attentional selectivity. According to a second class of models, called the “attention control models,” modifying AB requires the modification of attention control, driven by the recruitment of the dorsolateral prefrontal cortex. We formulate a series of specific predictions, to provide suggestions to trial these two approaches one against the other. This knowledge is critical for understanding the mechanisms of AB in anxiety disorders, which bares important clinical implications.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Anxiety-related attentional biases and their regulation by attentional control.

          This study examined the role of self-reported attentional control in regulating attentional biases related to trait anxiety. Simple detection targets were preceded by cues labeling potential target locations as threatening (likely to result in negative feedback) or safe (likely to result in positive feedback). Trait anxious participants showed an early attentional bias favoring the threatening location 250 ms after the cue and a late bias favoring the safe location 500 ms after the cue. The anxiety-related threat bias was moderated by attentional control at the 500-ms delay: Anxious participants with poor attentional control still showed the threat bias, whereas those with good control were better able to shift from the threatening location. Thus, skilled control of voluntary attention may allow anxious persons to limit the impact of threatening information.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging.

            Brain imaging studies in humans have shown that face processing in several areas is modulated by the affective significance of faces, particularly with fearful expressions, but also with other social signals such gaze direction. Here we review haemodynamic and electrical neuroimaging results indicating that activity in the face-selective fusiform cortex may be enhanced by emotional (fearful) expressions, without explicit voluntary control, and presumably through direct feedback connections from the amygdala. fMRI studies show that these increased responses in fusiform cortex to fearful faces are abolished by amygdala damage in the ipsilateral hemisphere, despite preserved effects of voluntary attention on fusiform; whereas emotional increases can still arise despite deficits in attention or awareness following parietal damage, and appear relatively unaffected by pharmacological increases in cholinergic stimulation. Fear-related modulations of face processing driven by amygdala signals may implicate not only fusiform cortex, but also earlier visual areas in occipital cortex (e.g., V1) and other distant regions involved in social, cognitive, or somatic responses (e.g., superior temporal sulcus, cingulate, or parietal areas). In the temporal domain, evoked-potentials show a widespread time-course of emotional face perception, with some increases in the amplitude of responses recorded over both occipital and frontal regions for fearful relative to neutral faces (as well as in the amygdala and orbitofrontal cortex, when using intracranial recordings), but with different latencies post-stimulus onset. Early emotional responses may arise around 120ms, prior to a full visual categorization stage indexed by the face-selective N170 component, possibly reflecting rapid emotion processing based on crude visual cues in faces. Other electrical components arise at later latencies and involve more sustained activities, probably generated in associative or supramodal brain areas, and resulting in part from the modulatory signals received from amygdala. Altogether, these fMRI and ERP results demonstrate that emotion face perception is a complex process that cannot be related to a single neural event taking place in a single brain regions, but rather implicates an interactive network with distributed activity in time and space. Moreover, although traditional models in cognitive neuropsychology have often considered that facial expression and facial identity are processed along two separate pathways, evidence from fMRI and ERPs suggests instead that emotional processing can strongly affect brain systems responsible for face recognition and memory. The functional implications of these interactions remain to be fully explored, but might play an important role in the normal development of face processing skills and in some neuropsychiatric disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurocognitive mechanisms of anxiety: an integrative account.

              Anxiety can be hugely disruptive to everyday life. Anxious individuals show increased attentional capture by potential signs of danger, and interpret expressions, comments and events in a negative manner. These cognitive biases have been widely explored in human anxiety research. By contrast, animal models have focused upon the mechanisms underlying acquisition and extinction of conditioned fear, guiding exposure-based therapies for anxiety disorders. Recent neuroimaging studies of conditioned fear, attention to threat and interpretation of emotionally ambiguous stimuli indicate common amygdala-prefrontal circuitry underlying these processes, and suggest that the balance of activity within this circuitry is altered in anxiety, creating a bias towards threat-related responses. This provides a focus for future translational research, and targeted pharmacological and cognitive interventions.
                Bookmark

                Author and article information

                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                04 April 2013
                2013
                : 7
                : 119
                Affiliations
                [1] 1Laboratory for Experimental Psychopathology, Psychological Sciences Research Institute, Université Catholique de Louvain Louvain-la-Neuve, Belgium
                [2] 2Psychopathology and Affective Neuroscience Lab, Department of Experimental Clinical and Health Psychology, Ghent University Ghent, Belgium
                Author notes

                Edited by: John J. Foxe, Albert Einstein College of Medicine, USA

                Reviewed by: Jan B. Engelmann, University of Zurich, Switzerland; Sarah E. Donohue, Duke University, USA

                *Correspondence: Alexandre Heeren, Laboratory for Experimental Psychopathology, Psychological Sciences Research Institute, Université Catholique de Louvain, Place du Cardinal Mercier 10, B-1348 Louvain-la-Neuve, Belgium. e-mail: alexandre.heeren@ 123456uclouvain.be ; heeren.alexandre@ 123456gmail.com
                Article
                10.3389/fnhum.2013.00119
                3616236
                23576969
                db90e84a-a0c8-4afa-9779-4b79c1c33975
                Copyright © 2013 Heeren, De Raedt, Koster and Philippot.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 04 February 2013
                : 18 March 2013
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 54, Pages: 6, Words: 5132
                Categories
                Neuroscience
                Perspective Article

                Neurosciences
                attentional bias,cognitive bias modification,experimental psychopathology,neuromodulation,dlpfc

                Comments

                Comment on this article