111
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Discovering faster matrix multiplication algorithms with reinforcement learning

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Improving the efficiency of algorithms for fundamental computations can have a widespread impact, as it can affect the overall speed of a large amount of computations. Matrix multiplication is one such primitive task, occurring in many systems—from neural networks to scientific computing routines. The automatic discovery of algorithms using machine learning offers the prospect of reaching beyond human intuition and outperforming the current best human-designed algorithms. However, automating the algorithm discovery procedure is intricate, as the space of possible algorithms is enormous. Here we report a deep reinforcement learning approach based on AlphaZero 1 for discovering efficient and provably correct algorithms for the multiplication of arbitrary matrices. Our agent, AlphaTensor, is trained to play a single-player game where the objective is finding tensor decompositions within a finite factor space. AlphaTensor discovered algorithms that outperform the state-of-the-art complexity for many matrix sizes. Particularly relevant is the case of 4 × 4 matrices in a finite field, where AlphaTensor’s algorithm improves on Strassen’s two-level algorithm for the first time, to our knowledge, since its discovery 50 years ago 2 . We further showcase the flexibility of AlphaTensor through different use-cases: algorithms with state-of-the-art complexity for structured matrix multiplication and improved practical efficiency by optimizing matrix multiplication for runtime on specific hardware. Our results highlight AlphaTensor’s ability to accelerate the process of algorithmic discovery on a range of problems, and to optimize for different criteria.

          Abstract

          A reinforcement learning approach based on AlphaZero is used to discover efficient and provably correct algorithms for matrix multiplication, finding faster algorithms for a variety of matrix sizes.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Article: not found

          Tensor Decompositions and Applications

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mastering the game of Go with deep neural networks and tree search.

            The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses 'value networks' to evaluate board positions and 'policy networks' to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Planning chemical syntheses with deep neural networks and symbolic AI

              To plan the syntheses of small organic molecules, chemists use retrosynthesis, a problem-solving technique in which target molecules are recursively transformed into increasingly simpler precursors. Computer-aided retrosynthesis would be a valuable tool but at present it is slow and provides results of unsatisfactory quality. Here we use Monte Carlo tree search and symbolic artificial intelligence (AI) to discover retrosynthetic routes. We combined Monte Carlo tree search with an expansion policy network that guides the search, and a filter network to pre-select the most promising retrosynthetic steps. These deep neural networks were trained on essentially all reactions ever published in organic chemistry. Our system solves for almost twice as many molecules, thirty times faster than the traditional computer-aided search method, which is based on extracted rules and hand-designed heuristics. In a double-blind AB test, chemists on average considered our computer-generated routes to be equivalent to reported literature routes.
                Bookmark

                Author and article information

                Contributors
                afawzi@deepmind.com
                Journal
                Nature
                Nature
                Nature
                Nature Publishing Group UK (London )
                0028-0836
                1476-4687
                5 October 2022
                5 October 2022
                2022
                : 610
                : 7930
                : 47-53
                Affiliations
                GRID grid.498210.6, ISNI 0000 0004 5999 1726, DeepMind, ; London, UK
                Author information
                http://orcid.org/0000-0001-7341-1917
                http://orcid.org/0000-0002-8470-8203
                http://orcid.org/0000-0002-5197-2892
                http://orcid.org/0000-0003-2812-9917
                http://orcid.org/0000-0002-7466-7997
                Article
                5172
                10.1038/s41586-022-05172-4
                9534758
                36198780
                dbae5854-d1f4-4b28-93a6-23af8e2ffd6a
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 2 October 2021
                : 2 August 2022
                Categories
                Article
                Custom metadata
                © The Author(s), under exclusive licence to Springer Nature Limited 2022

                Uncategorized
                applied mathematics,computer science
                Uncategorized
                applied mathematics, computer science

                Comments

                Comment on this article