13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Management of hypothyroidism with combination thyroxine (T4) and triiodothyronine (T3) hormone replacement in clinical practice: a review of suggested guidance

      review-article
      1 , 2 ,
      Thyroid Research
      BioMed Central
      Levothyroxine, Liothyronine, T4, T3, Thyroid hormone replacement

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Whilst trials of combination levothyroxine/liothyronine therapy versus levothyroxine monotherapy for thyroid hormone replacement have not shown any superiority, there remains a small subset of patients who do not feel well on monotherapy. Whilst current guidelines do not suggest routine use of combination therapy they do acknowledge a trial in such patients may be appropriate. It appears that use of combination therapy and dessicated thyroid extract is not uncommon but often being used by non-specialists and not adequately monitored. This review aims to provide practical advice on selecting patients, determining dose and monitoring of such a trial.

          Main body

          It is important to select the correct patient for a trial so as to not delay diagnosis or potentially worsen an undiagnosed condition. An appropriate starting dose may be calculated but accuracy is limited by available formulations and cost. Monitoring of thyroid function, benefits and adverse effects are vital in the trial setting given lack of evidence of safe long term use. Also important is that patients understand set up of the trial, potential risks involved and give consent.

          Conclusion

          Whilst evidence is lacking on whether a small group of patients may benefit from combination therapy a trial may be indicated in those who remain symptomatic despite adequate levothyroxine monotherapy. This should be undertaken by clinicians experienced in the field with appropriate monitoring for adverse outcomes in both short and long term.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular aspects of thyroid hormone actions.

          Cellular actions of thyroid hormone may be initiated within the cell nucleus, at the plasma membrane, in cytoplasm, and at the mitochondrion. Thyroid hormone nuclear receptors (TRs) mediate the biological activities of T(3) via transcriptional regulation. Two TR genes, alpha and beta, encode four T(3)-binding receptor isoforms (alpha1, beta1, beta2, and beta3). The transcriptional activity of TRs is regulated at multiple levels. Besides being regulated by T(3), transcriptional activity is regulated by the type of thyroid hormone response elements located on the promoters of T(3) target genes, by the developmental- and tissue-dependent expression of TR isoforms, and by a host of nuclear coregulatory proteins. These nuclear coregulatory proteins modulate the transcription activity of TRs in a T(3)-dependent manner. In the absence of T(3), corepressors act to repress the basal transcriptional activity, whereas in the presence of T(3), coactivators function to activate transcription. The critical role of TRs is evident in that mutations of the TRbeta gene cause resistance to thyroid hormones to exhibit an array of symptoms due to decreasing the sensitivity of target tissues to T(3). Genetically engineered knockin mouse models also reveal that mutations of the TRs could lead to other abnormalities beyond resistance to thyroid hormones, including thyroid cancer, pituitary tumors, dwarfism, and metabolic abnormalities. Thus, the deleterious effects of mutations of TRs are more severe than previously envisioned. These genetic-engineered mouse models provide valuable tools to ascertain further the molecular actions of unliganded TRs in vivo that could underlie the pathogenesis of hypothyroidism. Actions of thyroid hormone that are not initiated by liganding of the hormone to intranuclear TR are termed nongenomic. They may begin at the plasma membrane or in cytoplasm. Plasma membrane-initiated actions begin at a receptor on integrin alphavbeta3 that activates ERK1/2 and culminate in local membrane actions on ion transport systems, such as the Na(+)/H(+) exchanger, or complex cellular events such as cell proliferation. Concentration of the integrin on cells of the vasculature and on tumor cells explains recently described proangiogenic effects of iodothyronines and proliferative actions of thyroid hormone on certain cancer cells, including gliomas. Thus, hormonal events that begin nongenomically result in effects in DNA-dependent effects. l-T(4) is an agonist at the plasma membrane without conversion to T(3). Tetraiodothyroacetic acid is a T(4) analog that inhibits the actions of T(4) and T(3) at the integrin, including angiogenesis and tumor cell proliferation. T(3) can activate phosphatidylinositol 3-kinase by a mechanism that may be cytoplasmic in origin or may begin at integrin alphavbeta3. Downstream consequences of phosphatidylinositol 3-kinase activation by T(3) include specific gene transcription and insertion of Na, K-ATPase in the plasma membrane and modulation of the activity of the ATPase. Thyroid hormone, chiefly T(3) and diiodothyronine, has important effects on mitochondrial energetics and on the cytoskeleton. Modulation by the hormone of the basal proton leak in mitochondria accounts for heat production caused by iodothyronines and a substantial component of cellular oxygen consumption. Thyroid hormone also acts on the mitochondrial genome via imported isoforms of nuclear TRs to affect several mitochondrial transcription factors. Regulation of actin polymerization by T(4) and rT(3), but not T(3), is critical to cell migration. This effect has been prominently demonstrated in neurons and glial cells and is important to brain development. The actin-related effects in neurons include fostering neurite outgrowth. A truncated TRalpha1 isoform that resides in the extranuclear compartment mediates the action of thyroid hormone on the cytoskeleton.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prevalence and relative risk of other autoimmune diseases in subjects with autoimmune thyroid disease.

            Common autoimmune disorders tend to coexist in the same subjects and to cluster in families. We performed a cross-sectional multicenter study of 3286 Caucasian subjects (2791 with Graves' disease; 495 with Hashimoto's thyroiditis) attending UK hospital thyroid clinics to quantify the prevalence of coexisting autoimmune disorders. All subjects completed a structured questionnaire seeking a personal and parental history of common autoimmune disorders, as well as a history of hyperthyroidism or hypothyroidism among parents. The frequency of another autoimmune disorder was 9.67% in Graves' disease and 14.3% in Hashimoto's thyroiditis index cases (P=.005). Rheumatoid arthritis was the most common coexisting autoimmune disorder (found in 3.15% of Graves' disease and 4.24% of Hashimoto's thyroiditis cases). Relative risks of almost all other autoimmune diseases in Graves' disease or Hashimoto's thyroiditis were significantly increased (>10 for pernicious anemia, systemic lupus erythematosus, Addison's disease, celiac disease, and vitiligo). There was relative "clustering" of Graves' disease in the index case with parental hyperthyroidism and of Hashimoto's thyroiditis in the index case with parental hypothyroidism. Relative risks for most other coexisting autoimmune disorders were markedly increased among parents of index cases. This is one of the largest studies to date to quantify the risk of diagnosis of coexisting autoimmune diseases in more than 3000 index cases with well-characterized Graves' disease or Hashimoto's thyroiditis. These risks highlight the importance of screening for other autoimmune diagnoses if subjects with autoimmune thyroid disease present with new or nonspecific symptoms. Copyright (c) 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Narrow individual variations in serum T(4) and T(3) in normal subjects: a clue to the understanding of subclinical thyroid disease.

              High individuality causes laboratory reference ranges to be insensitive to changes in test results that are significant for the individual. We undertook a longitudinal study of variation in thyroid function tests in 16 healthy men with monthly sampling for 12 months using standard procedures. We measured serum T(4), T(3), free T(4) index, and TSH. All individuals had different variations of thyroid function tests (P < 0.001 for all variables) around individual mean values (set points) (P < 0.001 for all variables). The width of the individual 95% confidence intervals were approximately half that of the group for all variables. Accordingly, the index of individuality was low: T(4) = 0.58; T(3) = 0.54; free T(4) index = 0.59; TSH = 0.49. One test result described the individual set point with a precision of +/- 25% for T(4), T(3), free T(4) index, and +/- 50% for TSH. The differences required to be 95% confident of significant changes in repeated testing were (average, range): T(4) = 28, 11-62 nmol/liter; T(3) = 0.55, 0.3--0.9 nmol/liter; free T4 index = 33, 15-61 nmol/liter; TSH = 0.75, 0.2-1.6 mU/liter. Our data indicate that each individual had a unique thyroid function. The individual reference ranges for test results were narrow, compared with group reference ranges used to develop laboratory reference ranges. Accordingly, a test result within laboratory reference limits is not necessarily normal for an individual. Because serum TSH responds with logarithmically amplified variation to minor changes in serum T(4) and T(3), abnormal serum TSH may indicate that serum T(4) and T(3) are not normal for an individual. A condition with abnormal serum TSH but with serum T(4) and T(3) within laboratory reference ranges is labeled subclinical thyroid disease. Our data indicate that the distinction between subclinical and overt thyroid disease (abnormal serum TSH and abnormal T(4) and/or T(3)) is somewhat arbitrary. For the same degree of thyroid function abnormality, the diagnosis depends to a considerable extent on the position of the patient's normal set point for T(4) and T(3) within the laboratory reference range.
                Bookmark

                Author and article information

                Contributors
                DayanCM@cardiff.ac.uk
                Vijay.Panicker@health.wa.gov.au
                Journal
                Thyroid Res
                Thyroid Res
                Thyroid Research
                BioMed Central (London )
                1756-6614
                17 January 2018
                17 January 2018
                2018
                : 11
                : 1
                Affiliations
                [1 ]ISNI 0000 0001 0807 5670, GRID grid.5600.3, Thyroid Research Group, School of Medicine, , Cardiff University, ; Cardiff, UK
                [2 ]ISNI 0000 0004 0437 5942, GRID grid.3521.5, Department of Endocrinology, , Sir Charles Gairdner Hospital, ; Nedlands, WA 6009 Australia
                Author information
                http://orcid.org/0000-0003-1551-8411
                Article
                45
                10.1186/s13044-018-0045-x
                5772692
                29375671
                dbbf5885-edca-49a0-a00c-c21b59afe75f
                © The Author(s). 2018

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 22 October 2017
                : 11 January 2018
                Categories
                Review
                Custom metadata
                © The Author(s) 2018

                Endocrinology & Diabetes
                levothyroxine,liothyronine,t4,t3,thyroid hormone replacement
                Endocrinology & Diabetes
                levothyroxine, liothyronine, t4, t3, thyroid hormone replacement

                Comments

                Comment on this article