5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of Attenuated Total Reflectance Mid-Infrared (ATR-MIR) and Near-Infrared (NIR) Spectroscopy for the Determination of Resistant Starch Content in Wheat Grains

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The chemical method for the determination of the resistant starch (RS) content in grains is time-consuming and labor intensive. Near-infrared (NIR) and attenuated total reflectance mid-infrared (ATR-MIR) spectroscopy are rapid and nondestructive analytical techniques for determining grain quality. This study was the first report to establish and compare these two spectroscopic techniques for determining the RS content in wheat grains. Calibration models with four preprocessing techniques based on the partial least squares (PLS) algorithm were built. In the NIR technique, the mean normalization + Savitzky–Golay smoothing (MN + SGS) preprocessing technique had a higher coefficient of determination ( R c 2 = 0.672; R p 2 = 0.552) and a relative lower root mean square error value (RMSEC = 0.385; RMSEP = 0.459). In the ATR-MIR technique, the baseline preprocessing method exhibited a better performance regarding to the values of coefficient of determination ( R c 2 = 0.927; R p 2 = 0.828) and mean square error value (RMSEC = 0.153; RMSEP = 0.284). The validation of the developed best NIR and ATR-MIR calibration models showed that the ATR-MIR best calibration model has a better RS prediction ability than the NIR best calibration model. Two high grain RS content wheat mutants were screened out by the ATR-MIR best calibration model from the wheat mutant library. There was no significant difference between the predicted values and chemical measured values in the two high RS content mutants. It proved that the ATR-MIR model can be a perfect substitute in RS measuring. All the results indicated that the ATR-MIR spectroscopy with improved screening efficiency can be used as a fast, rapid, and nondestructive method in high grain RS content wheat breeding.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Standard Normal Variate Transformation and De-trending of Near-Infrared Diffuse Reflectance Spectra

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Resistant starch in food: a review.

            The nutritional property of starch is related to its rate and extent of digestion and absorption in the small intestine. For nutritional purposes, starch is classified as rapidly available, slowly available and resistant starch (RS). The exact underlying mechanism of relative resistance of starch granules is complicated because those factors are often interconnected. The content of RS in food is highly influenced by food preparation manner and processing techniques. Physical or chemical treatments also alter the level of RS in a food. Commercial preparations of RS are now available and can be added to foods as an ingredient for lowering the calorific value and improving textural and organoleptic characteristics along with increasing the amount of dietary fiber. RS has assumed great importance owing to its unique functional properties and health benefits. The beneficial effects of RS include glycemic control and control of fasting plasma triglyceride and cholesterol levels and absorption of minerals. This review attempts to analyze the information published, especially in the recent past, on classification, structure, properties, applications and health benefits of RS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat.

              To assess the effects of energy dilution with non-fermentable and fermentable fibers on abdominal fat and gut peptide YY (PYY) and glucagon-like peptide (GLP)-1 expressions, three rat studies were conducted to: determine the effects of energy dilution with a non-fermentable fiber, compare similar fiber levels of fermentable and non-fermentable fibers, and compare similar metabolizable energy dilutions with fermentable and non-fermentable fibers. In Study 1, rats were fed one of three diets with different metabolizable energy densities. In Study 2, rats were fed diets with similar fiber levels using high amylose-resistant cornstarch (RS) or methylcellulose. In Study 3, rats were fed diets with a similar dilution of metabolizable energy using cellulose or RS. Measurements included food intake, body weight, abdominal fat, plasma PYY and GLP-1, gastrointestinal tract weights, and gene transcription of PYY and proglucagon. Energy dilution resulted in decreased abdominal fat in all studies. In Study 2, rats fed fermentable RS had increased cecal weights and plasma PYY and GLP-1, and increased gene transcription of PYY and proglucagon. In Study 3, RS-fed rats had increased short-chain fatty acids in cecal contents, plasma PYY (GLP-1 not measured), and gene transcription for PYY and proglucagon. Inclusion of RS in the diet may affect energy balance through its effect as a fiber or a stimulator of PYY and GLP-1 expression. Increasing gut hormone signaling with a bioactive functional food such as RS may be an effective natural approach to the treatment of obesity.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Anal Methods Chem
                J Anal Methods Chem
                jamc
                Journal of Analytical Methods in Chemistry
                Hindawi
                2090-8865
                2090-8873
                2021
                14 July 2021
                : 2021
                : 5599388
                Affiliations
                1Hubei Key Laboratory of Waterlogging Disaster and Agriculture Use of Wetland and Hubei Collaborative Innovation Centre for Grain Industry and Engineering Research Center of Ecology and Agriculture Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, Hubei 434025, China
                2Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
                3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
                4Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan 430056, China
                5College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430064, China
                Author notes

                Academic Editor: Alessandro Buccolieri

                Author information
                https://orcid.org/0000-0001-6912-1482
                https://orcid.org/0000-0002-7917-8885
                Article
                10.1155/2021/5599388
                8298176
                34336359
                dbde5488-51e2-4b27-8c56-f132a6a6a295
                Copyright © 2021 Rong Wang et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 February 2021
                : 5 May 2021
                : 24 June 2021
                Funding
                Funded by: National Key Research and Development Program
                Award ID: 2016YFD0102101
                Funded by: Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin
                Award ID: 202008
                Funded by: Engineering Research Center of Ecology and Agriculture Use of Wetland
                Award ID: KFT202007
                Categories
                Research Article

                Analytical chemistry
                Analytical chemistry

                Comments

                Comment on this article