25
views
0
recommends
+1 Recommend
1 collections
    6
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A method for creating interactive, user-resembling avatars

      ,
      PeerJ Computer Science
      PeerJ

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Virtual reality (VR) applications have disseminated throughout several fields, with a special quest for immersion. The avatar is one of the key constituents of immersive applications, and avatar resemblance can provoke diverse emotional responses from the user. Yet a lot a virtual reality systems struggle to implement real life-like avatars. In this work, we propose a novel method for creating interactive, user-resembling avatars using available commercial hardware and software. Avatar visualization is possible with a point-cloud or a contiguous polygon surface, and avatar interactions with the virtual scenario happens through a body joint-approximation for contact. In addition, the implementation could be easily extended to other systems and its modular architecture admits improvement both on visualization and physical interactions. The code is under Apache License 2.0 and is freely available as Supplemental Information 1 in this article.

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients

          Brain-machine interfaces (BMIs) provide a new assistive strategy aimed at restoring mobility in severely paralyzed patients. Yet, no study in animals or in human subjects has indicated that long-term BMI training could induce any type of clinical recovery. Eight chronic (3–13 years) spinal cord injury (SCI) paraplegics were subjected to long-term training (12 months) with a multi-stage BMI-based gait neurorehabilitation paradigm aimed at restoring locomotion. This paradigm combined intense immersive virtual reality training, enriched visual-tactile feedback, and walking with two EEG-controlled robotic actuators, including a custom-designed lower limb exoskeleton capable of delivering tactile feedback to subjects. Following 12 months of training with this paradigm, all eight patients experienced neurological improvements in somatic sensation (pain localization, fine/crude touch, and proprioceptive sensing) in multiple dermatomes. Patients also regained voluntary motor control in key muscles below the SCI level, as measured by EMGs, resulting in marked improvement in their walking index. As a result, 50% of these patients were upgraded to an incomplete paraplegia classification. Neurological recovery was paralleled by the reemergence of lower limb motor imagery at cortical level. We hypothesize that this unprecedented neurological recovery results from both cortical and spinal cord plasticity triggered by long-term BMI usage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Validity of the Microsoft Kinect for assessment of postural control.

            Clinically feasible methods of assessing postural control such as timed standing balance and functional reach tests provide important information, however, they cannot accurately quantify specific postural control mechanisms. The Microsoft Kinect™ system provides real-time anatomical landmark position data in three dimensions (3D), and given that it is inexpensive, portable and simple to setup it may bridge this gap. This study assessed the concurrent validity of the Microsoft Kinect™ against a benchmark reference, a multiple-camera 3D motion analysis system, in 20 healthy subjects during three postural control tests: (i) forward reach, (ii) lateral reach, and (iii) single-leg eyes-closed standing balance. For the reach tests, the outcome measures consisted of distance reached and trunk flexion angle in the sagittal (forward reach) and coronal (lateral reach) planes. For the standing balance test the range and deviation of movement in the anatomical landmark positions for the sternum, pelvis, knee and ankle and the lateral and anterior trunk flexion angle were assessed. The Microsoft Kinect™ and 3D motion analysis systems had comparable inter-trial reliability (ICC difference=0.06±0.05; range, 0.00-0.16) and excellent concurrent validity, with Pearson's r-values >0.90 for the majority of measurements (r=0.96±0.04; range, 0.84-0.99). However, ordinary least products analyses demonstrated proportional biases for some outcome measures associated with the pelvis and sternum. These findings suggest that the Microsoft Kinect™ can validly assess kinematic strategies of postural control. Given the potential benefits it could therefore become a useful tool for assessing postural control in the clinical setting. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Analysis of the Accuracy and Robustness of the Leap Motion Controller

              The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.
                Bookmark

                Author and article information

                Journal
                PeerJ Computer Science
                PeerJ
                2376-5992
                2017
                July 2017
                : 3
                :
                : e128
                Article
                10.7717/peerj-cs.128
                dbdfcb46-ce5d-4654-b2b0-46f961314f55
                © 2017

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.

                History

                Computer science
                Computer science

                Comments

                Comment on this article