22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genomic clues to an ancient asexual scandal

      review-article
      1 , , 1
      Genome Biology
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The bdelloid rotifers are a successful and diverse group of organisms, despite being entirely asexual. How do they do it?

          Abstract

          Despite abandoning meiosis, the bdelloid rotifers have persisted for millions of years and given rise to hundreds of species. Several mechanisms - allelic variants with different functions, high effective population size, and resistance to radiation - may contribute to their success.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          The evolutionary advantage of recombination.

          The controversy over the evolutionary advantage of recombination initially discovered by Fisher and by Muller is reviewed. Those authors whose models had finite-population effects found an advantage of recombination, and those whose models had infinite populations found none. The advantage of recombination is that it breaks down random linkage disequilibrium generated by genetic drift. Hill and Robertson found that the average effect of this randomly-generated linkage disequilibrium was to cause linked loci to interfere with each other's response to selection, even where there was no gene interaction between the loci. This effect is shown to be identical to the original argument of Fisher and Muller. It also predicts the "ratchet mechanism" discovered by Muller, who pointed out that deleterious mutants would more readily increase in a population without recombination. Computer simulations of substitution of favorable mutants and of the long-term increase of deleterious mutants verified the essential correctness of the original Fisher-Muller argument and the reality of the Muller ratchet mechanism. It is argued that these constitute an intrinsic advantage of recombination capable of accounting for its persistence in the face of selection for tighter linkage between interacting polymorphisms, and possibly capable of accounting for its origin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange.

            The Class Bdelloidea of the Phylum Rotifera is the largest metazoan taxon in which males, hermaphrodites, and meiosis are unknown. We conducted a molecular genetic test of this indication that bdelloid rotifers may have evolved without sexual reproduction or genetic exchange. The test is based on the expectation that after millions of years without these processes, genomes will no longer contain pairs of closely similar haplotypes and instead will contain highly divergent descendants of formerly allelic nucleotide sequences. We find that genomes of individual bdelloid rotifers, representing four different species, appear to lack pairs of closely similar sequences and contain representatives of two ancient lineages that began to diverge before the bdelloid radiation many millions of years ago when sexual reproduction and genetic exchange may have ceased.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Radiation tolerance in the tardigrade Milnesium tardigradum.

              Tardigrades are known to survive high doses of ionizing radiation. However, there have been no reports about radiation effects in tardigrades under culture conditions. In this study, we investigated tolerance of the tardigrade, Milnesium tardigradum, against gamma-rays and heavy ions by determining short-term or long-term survival, and reproductive ability after irradiation. Hydrated and anhydrobiotic animals were exposed to gamma-rays (1000 - 7000 Gy) or heavy ions (1000 - 8000 Gy) to evaluate short-term survival at 2, 24 and 48 h post-irradiation. Long-term survival and reproduction were observed up to 31 days after irradiation with gamma-rays (1000 - 4000 Gy). At 48 h after irradiation, median lethal doses were 5000 Gy (gamma-rays) and 6200 Gy (heavy ions) in hydrated animals, and 4400 Gy (gamma-rays) and 5200 Gy (heavy ions) in anhydrobiotic ones. Gamma-irradiation shortened average life span in a dose-dependent manner both in hydrated and anhydrobiotic groups. No irradiated animals laid eggs with one exception in which a hydrated animal irradiated with 2000 Gy of gamma-rays laid 3 eggs, and those eggs failed to hatch, whereas eggs produced by non-irradiated animals hatched successfully. M. tardigradum survives high doses of ionizing radiation in both hydrated and anhydrobiotic states, but irradiation with >1000 Gy makes them sterile.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central
                1465-6906
                1465-6914
                2007
                28 December 2007
                : 8
                : 12
                : 232
                Affiliations
                [1 ]Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
                Article
                gb-2007-8-12-232
                10.1186/gb-2007-8-12-232
                2246254
                18177507
                dbe3cd83-4273-403e-b457-7718e1b508af
                Copyright © 2007 BioMed Central Ltd
                History
                Categories
                Minireview

                Genetics
                Genetics

                Comments

                Comment on this article