8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identifying Therapeutic Targets for Spinocerebellar Ataxia Type 3/Machado–Joseph Disease through Integration of Pathological Biomarkers and Therapeutic Strategies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spinocerebellar ataxia type 3/Machado–Joseph disease (SCA3/MJD) is a progressive motor disease with no broadly effective treatment. However, most current therapies are based on symptoms rather than the underlying disease mechanisms. In this review, we describe potential therapeutic strategies based on known pathological biomarkers and related pathogenic processes. The three major conclusions from the current studies are summarized as follows: (i) for the drugs currently being tested in clinical trials; a weak connection was observed between drugs and SCA3/MJD biomarkers. The only two exceptions are the drugs suppressing glutamate-induced calcium influx and chemical chaperon. (ii) For most of the drugs that have been tested in animal studies, there is a direct association with pathological biomarkers. We further found that many drugs are associated with inducing autophagy, which is supported by the evidence of deficient autophagy biomarkers in SCA3/MJD, and that there may be more promising therapeutics. (iii) Some reported biomarkers lack relatively targeted drugs. Low glucose utilization, altered amino acid metabolism, and deficient insulin signaling are all implicated in SCA3/MJD, but there have been few studies on treatment strategies targeting these abnormalities. Therapeutic strategies targeting multiple pathological SCA3/MJD biomarkers may effectively block disease progression and preserve neurological function.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease.

          Machado-Joseph disease (MJD; also called spinocerebellar ataxia type 3) is a dominantly inherited late-onset neurodegenerative disorder caused by expansion of polyglutamine (polyQ)-encoding CAG repeats in the MJD1 gene (also known as ATXN3). Proteolytic liberation of highly aggregation-prone polyQ fragments from the protective sequence of the MJD1 gene product ataxin 3 (ATXN3) has been proposed to trigger the formation of ATXN3-containing aggregates, the neuropathological hallmark of MJD. ATXN3 fragments are detected in brain tissue of MJD patients and transgenic mice expressing mutant human ATXN3(Q71), and their amount increases with disease severity, supporting a relationship between ATXN3 processing and disease progression. The formation of early aggregation intermediates is thought to have a critical role in disease initiation, but the precise pathogenic mechanism operating in MJD has remained elusive. Here we show that L-glutamate-induced excitation of patient-specific induced pluripotent stem cell (iPSC)-derived neurons initiates Ca(2+)-dependent proteolysis of ATXN3 followed by the formation of SDS-insoluble aggregates. This phenotype could be abolished by calpain inhibition, confirming a key role of this protease in ATXN3 aggregation. Aggregate formation was further dependent on functional Na(+) and K(+) channels as well as ionotropic and voltage-gated Ca(2+) channels, and was not observed in iPSCs, fibroblasts or glia, thereby providing an explanation for the neuron-specific phenotype of this disease. Our data illustrate that iPSCs enable the study of aberrant protein processing associated with late-onset neurodegenerative disorders in patient-specific neurons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2.

            Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited, neurodegenerative disease caused by an expansion of polyglutamine tracts in the cytosolic protein ataxin-2 (Atx2). Cerebellar Purkinje cells (PCs) are predominantly affected in SCA2. The cause of PC degeneration in SCA2 is unknown. Here we demonstrate that mutant Atx2-58Q, but not wild-type (WT) Atx2-22Q, specifically associates with the cytosolic C-terminal region of type 1 inositol 1,4,5-trisphosphate receptor (InsP(3)R1), an intracellular calcium (Ca(2+)) release channel. Association with Atx2-58Q increased the sensitivity of InsP(3)R1 to activation by InsP(3) in planar lipid bilayer reconstitution experiments. To validate physiological significance of these findings, we performed a series of experiments with an SCA2-58Q transgenic mouse model that expresses human full-length Atx2-58Q protein under the control of a PC-specific promoter. In Ca(2+) imaging experiments, we demonstrated that stimulation with 3,5-dihydroxyphenylglycine (DHPG) resulted in higher Ca(2+) responses in 58Q PC cultures than in WT PC cultures. DHPG-induced Ca(2+) responses in 58Q PC cultures were blocked by the addition of ryanodine, an inhibitor of the ryanodine receptor (RyanR). We further demonstrated that application of glutamate induced more pronounced cell death in 58Q PC cultures than in WT PC cultures. Glutamate-induced cell death of 58Q PC cultures was attenuated by dantrolene, a clinically relevant RyanR inhibitor and Ca(2+) stabilizer. In whole animal experiments, we demonstrated that long-term feeding of SCA1-58Q mice with dantrolene alleviated age-dependent motor deficits (quantified in beam-walk and rotarod assays) and reduced PC loss observed in untreated SCA2-58Q mice by 12 months of age (quantified by stereology). Results of our studies indicate that disturbed neuronal Ca(2+) signaling may play an important role in SCA2 pathology and also suggest that the RyanR constitutes a potential therapeutic target for treatment of SCA2 patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice

              Although nutrients, including amino acids and their metabolites such as serotonin (5-HT), are strong modulators of anxiety-related behavior, the metabolic pathway(s) responsible for this physiological modulation is not fully understood. Regarding tryptophan (Trp), the initial rate-limiting enzymes for the kynurenine pathway of tryptophan metabolism are tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO). Here, we generated mice deficient for tdo (Tdo -/-). Compared with wild-type littermates, Tdo -/- mice showed increased plasma levels of Trp and its metabolites 5-hydroxyindoleacetic acid (5-HIAA) and kynurenine, as well as increased levels of Trp, 5-HT and 5-HIAA in the hippocampus and midbrain. These mice also showed anxiolytic modulation in the elevated plus maze and open field tests, and increased adult neurogenesis, as evidenced by double staining of BrdU and neural progenitor/neuronal markers. These findings demonstrate a direct molecular link between Trp metabolism and neurogenesis and anxiety-related behavior under physiological conditions.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                26 April 2020
                May 2020
                : 21
                : 9
                : 3063
                Affiliations
                [1 ]Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
                [2 ]Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
                [3 ]Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
                [4 ]Department of Pathology, Hualien Tzu Chi Hospital, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
                Author notes
                [* ]Correspondence: yushuanchenxie@ 123456gmail.com (Y.-S.C.); arthewduke@ 123456gmail.com (H.-J.H.); Tel.: +886-3-856-1825 (Y.-S.C. & H.-J.H.); Fax: +886-3-856-0977 (H.-J.H.)
                Article
                ijms-21-03063
                10.3390/ijms21093063
                7246822
                32357546
                dbe5b675-f4ad-4ed1-ace8-96596f29a677
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 April 2020
                : 24 April 2020
                Categories
                Review

                Molecular biology
                spinocerebellar ataxia type 3/machado–joseph disease,therapeutic strategies,pathological biomarkers

                Comments

                Comment on this article