13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges

      , , , ,

      Nature Reviews Clinical Oncology

      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Immunotherapy has emerged as a major therapeutic modality in oncology. Currently, however, the majority of patients with cancer do not derive benefit from these treatments. Vascular abnormalities are a hallmark of most solid tumours and facilitate immune evasion. These abnormalities stem from elevated levels of proangiogenic factors, such as VEGF and angiopoietin 2 (ANG2); judicious use of drugs targeting these molecules can improve therapeutic responsiveness, partially owing to normalization of the abnormal tumour vasculature that can, in turn, increase the infiltration of immune effector cells into tumours and convert the intrinsically immunosuppressive tumour microenvironment (TME) to an immunosupportive one. Immunotherapy relies on the accumulation and activity of immune effector cells within the TME, and immune responses and vascular normalization seem to be reciprocally regulated. Thus, combining antiangiogenic therapies and immunotherapies might increase the effectiveness of immunotherapy and diminish the risk of immune-related adverse effects. In this Perspective, we outline the roles of VEGF and ANG2 in tumour immune evasion and progression, and discuss the evidence indicating that antiangiogenic agents can normalize the TME. We also suggest ways that antiangiogenic agents can be combined with immune-checkpoint inhibitors to potentially improve patient outcomes, and highlight avenues of future research. </p>

          Related collections

          Most cited references 108

          • Record: found
          • Abstract: found
          • Article: not found

          Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis.

          Angiogenesis is thought to depend on a precise balance of positive and negative regulation. Angiopoietin-1 (Ang1) is an angiogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase. Like vascular endothelial growth factor, Ang1 is essential for normal vascular development in the mouse. An Ang1 relative, termed angiopoietin-2 (Ang2), was identified by homology screening and shown to be a naturally occurring antagonist for Ang1 and Tie2. Transgenic overexpression of Ang2 disrupts blood vessel formation in the mouse embryo. In adult mice and humans, Ang2 is expressed only at sites of vascular remodeling. Natural antagonists for vertebrate receptor tyrosine kinases are atypical; thus, the discovery of a negative regulator acting on Tie2 emphasizes the need for exquisite regulation of this angiogenic receptor system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells.

            Although immune mechanisms can suppress tumour growth, tumours establish potent, overlapping mechanisms that mediate immune evasion. Emerging evidence suggests a link between angiogenesis and the tolerance of tumours to immune mechanisms. Hypoxia, a condition that is known to drive angiogenesis in tumours, results in the release of damage-associated pattern molecules, which can trigger the rejection of tumours by the immune system. Thus, the counter-activation of tolerance mechanisms at the site of tumour hypoxia would be a crucial condition for maintaining the immunological escape of tumours. However, a direct link between tumour hypoxia and tolerance through the recruitment of regulatory cells has not been established. We proposed that tumour hypoxia induces the expression of chemotactic factors that promote tolerance. Here we show that tumour hypoxia promotes the recruitment of regulatory T (T(reg)) cells through induction of expression of the chemokine CC-chemokine ligand 28 (CCL28), which, in turn, promotes tumour tolerance and angiogenesis. Thus, peripheral immune tolerance and angiogenesis programs are closely connected and cooperate to sustain tumour growth. ©2011 Macmillan Publishers Limited. All rights reserved
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Improved survival with bevacizumab in advanced cervical cancer.

              Vascular endothelial growth factor (VEGF) promotes angiogenesis, a mediator of disease progression in cervical cancer. Bevacizumab, a humanized anti-VEGF monoclonal antibody, has single-agent activity in previously treated, recurrent disease. Most patients in whom recurrent cervical cancer develops have previously received cisplatin with radiation therapy, which reduces the effectiveness of cisplatin at the time of recurrence. We evaluated the effectiveness of bevacizumab and nonplatinum combination chemotherapy in patients with recurrent, persistent, or metastatic cervical cancer. Using a 2-by-2 factorial design, we randomly assigned 452 patients to chemotherapy with or without bevacizumab at a dose of 15 mg per kilogram of body weight. Chemotherapy consisted of cisplatin at a dose of 50 mg per square meter of body-surface area, plus paclitaxel at a dose of 135 or 175 mg per square meter or topotecan at a dose of 0.75 mg per square meter on days 1 to 3, plus paclitaxel at a dose of 175 mg per square meter on day 1. Cycles were repeated every 21 days until disease progression, the development of unacceptable toxic effects, or a complete response was documented. The primary end point was overall survival; a reduction of 30% in the hazard ratio for death was considered clinically important. Groups were well balanced with respect to age, histologic findings, performance status, previous use or nonuse of a radiosensitizing platinum agent, and disease status. Topotecan-paclitaxel was not superior to cisplatin-paclitaxel (hazard ratio for death, 1.20). With the data for the two chemotherapy regimens combined, the addition of bevacizumab to chemotherapy was associated with increased overall survival (17.0 months vs. 13.3 months; hazard ratio for death, 0.71; 98% confidence interval, 0.54 to 0.95; P=0.004 in a one-sided test) and higher response rates (48% vs. 36%, P=0.008). Bevacizumab, as compared with chemotherapy alone, was associated with an increased incidence of hypertension of grade 2 or higher (25% vs. 2%), thromboembolic events of grade 3 or higher (8% vs. 1%), and gastrointestinal fistulas of grade 3 or higher (3% vs. 0%). The addition of bevacizumab to combination chemotherapy in patients with recurrent, persistent, or metastatic cervical cancer was associated with an improvement of 3.7 months in median overall survival. (Funded by the National Cancer Institute; GOG 240 ClinicalTrials.gov number, NCT00803062.).
                Bookmark

                Author and article information

                Journal
                Nature Reviews Clinical Oncology
                Nat Rev Clin Oncol
                Springer Nature
                1759-4774
                1759-4782
                March 6 2018
                March 6 2018
                :
                :
                Article
                10.1038/nrclinonc.2018.29
                5921900
                29508855
                © 2018

                Comments

                Comment on this article