17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The spatiotemporal expression of multiple coho salmon ovarian connexin genes and their hormonal regulation in vitro during oogenesis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Throughout oogenesis, cell-cell communication via gap junctions (GJs) between oocytes and surrounding follicle cells (theca and granulosa cells), and/or amongst follicle cells is required for successful follicular development. To gain a fundamental understanding of ovarian GJs in teleosts, gene transcripts encoding GJ proteins, connexins ( cx), were identified in the coho salmon, Oncorhynchus kisutch, ovary. The spatiotemporal expression of four ovarian cx transcripts was assessed, as well as their potential regulation by follicle-stimulating hormone (FSH), luteinizing hormone (LH) and insulin-like growth factor 1 (IGF1).

          Methods

          Salmonid ovarian transcriptomes were mined for cx genes. Four gene transcripts designated cx30.9, cx34.3, cx43.2, and cx44.9 were identified. Changes in gene expression across major stages of oogenesis were determined with real-time, quantitative RT-PCR (qPCR) and cx transcripts were localized to specific ovary cell-types by in situ hybridization. Further, salmon ovarian follicles were cultured with various concentrations of FSH, LH and IGF1 and effects of each hormone on cx gene expression were determined by qPCR.

          Results

          Transcripts for cx30.9 and cx44.9 were highly expressed at the perinucleolus (PN)-stage and decreased thereafter. In contrast, transcripts for cx34.3 and cx43.2 were low at the PN-stage and increased during later stages of oogenesis, peaking at the mid vitellogenic (VIT)-stage and maturing (MAT)-stage, respectively. In situ hybridization revealed that transcripts for cx34.3 were only detected in granulosa cells, but other cx transcripts were detected in both oocytes and follicle cells. Transcripts for cx30.9 and cx44.9 were down-regulated by FSH and IGF1 at the lipid droplet (LD)-stage, whereas transcripts for cx34.3 were up-regulated by FSH and IGF1 at the LD-stage, and LH and IGF1 at the late VIT-stage. Transcripts for cx43.2 were down-regulated by IGF1 at the late VIT-stage and showed no response to gonadotropins.

          Conclusion

          Our findings demonstrate the presence and hormonal regulation of four different cx transcripts in the salmon ovary. Differences in the spatiotemporal expression profile and hormonal regulation of these cx transcripts likely relate to their different roles during ovarian follicle differentiation and development.

          Related collections

          Most cited references 49

          • Record: found
          • Abstract: not found
          • Article: not found

          The gap junction communication channel.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oocyte-somatic cell interactions during follicle development in mammals.

            Our current perspectives on the relationship between the oocyte and its surrounding somatic cells are changing as we gain a greater understanding of factors regulating folliculogenesis. It is now widely accepted that the oocyte plays a very active role in promoting follicle growth and directing granulosa cell differentiation. The oocyte achieves this, in part, by secreting soluble paracrine growth factors that act on its neighboring granulosa cells, which in turn regulate oocyte development. In preantral follicles, the oocyte directs granulosa cells to regulate oocyte growth, and oocytes may also directly drive follicle growth. In antral follicles, the oocyte governs the behaviour of cells in its immediate vicinity, thereby actively regulating its own microenvironment. As such, the oocyte establishes and maintains the distinct cumulus lineage of granulosa cells. This oocyte-cumulus cell interaction, in general, prevents luteinization of cumulus cells by promoting growth, regulating steroidogenesis and inhibin synthesis, and suppressing luteinizing hormone receptor expression. Conversely, mural granulosa cells in antral follicles, which have no direct physical contact with the oocyte and, presumably, experience a more diffuse concentration of oocyte-secreted factors, proceed to a different phenotype. In the ovulating follicle, oocyte-secreted factors also play vital roles in enabling cumulus cell expansion and regulating extracellular matrix stability, thus facilitating ovulation. The identities of these oocyte-secreted growth factors regulating such key ovarian functions remain unknown, although growth differentiation factor-9 (GDF-9), GDF-9B and/or bone morphogenetic protein-6 (BMP-6) are likely candidate molecules, probably forming complex local interactions with other related members of the transforming growth factor-beta (TGF-beta) superfamily. Elucidating the nature of oocyte-somatic cell interactions at the various stages of follicle development will have important implications for our understanding of factors regulating folliculogenesis, ovulation rate and fecundity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Connections with connexins: the molecular basis of direct intercellular signaling.

              Adjacent cells share ions, second messengers and small metabolites through intercellular channels which are present in gap junctions. This type of intercellular communication permits coordinated cellular activity, a critical feature for organ homeostasis during development and adult life of multicellular organisms. Intercellular channels are structurally more complex than other ion channels, because a complete cell-to-cell channel spans two plasma membranes and results from the association of two half channels, or connexons, contributed separately by each of the two participating cells. Each connexon, in turn, is a multimeric assembly of protein subunits. The structural proteins comprising these channels, collectively called connexins, are members of a highly related multigene family consisting of at least 13 members. Since the cloning of the first connexin in 1986, considerable progress has been made in our understanding of the complex molecular switches that control the formation and permeability of intercellular channels. Analysis of the mechanisms of channel assembly has revealed the selectivity of inter-connexin interactions and uncovered novel characteristics of the channel permeability and gating behavior. Structure/function studies have begun to provide a molecular understanding of the significance of connexin diversity and demonstrated the unique regulation of connexins by tyrosine kinases and oncogenes. Finally, mutations in two connexin genes have been linked to human diseases. The development of more specific approaches (dominant negative mutants, knockouts, transgenes) to study the functional role of connexins in organ homeostasis is providing a new perception about the significance of connexin diversity and the regulation of intercellular communication.
                Bookmark

                Author and article information

                Journal
                Reprod Biol Endocrinol
                Reproductive Biology and Endocrinology : RB&E
                BioMed Central
                1477-7827
                2011
                19 April 2011
                : 9
                : 52
                Affiliations
                [1 ]School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA 98195, USA
                [2 ]Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA 98112, USA
                Article
                1477-7827-9-52
                10.1186/1477-7827-9-52
                3094281
                21501524
                Copyright ©2011 Yamamoto et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research

                Human biology

                Comments

                Comment on this article