5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comprehensive diagnosis of PCDD/F emission from three hazardous waste incinerators

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Comprehensive diagnosis of polychlorinated dibenzo- p-dioxin and dibenzofuran (PCDD/F) emissions was systematically conducted on three hazardous waste incinerators (HWIs). Results indicated that PCDD/F mainly existed in the solid phase before the bag filter. This was especially true for higher chlorinated dioxin and furan congeners (hexa-, hepta- and octa-). The aged bag filters tended to increase the gas-phase PCDD/F. Emissions also increased due to PCDD/F desorption from circulated scrubbing solution and plastic packing media used in the wet scrubber. The PCDD/F concentrations were elevated during the start-up process, reaching up to 5.4 times higher than those measured during the normal operating period. The ratios of PCDFs/PCDDs revealed that the surface-catalysed de novo synthesis was the dominant pathway of PCDD/F formation. Installation of more efficient fabric filters, intermittent replacement of circulated scrubbing solution will result in reduced PCDD/F emission. Additionally, 2,3,4,7,8-PeCDF correlated well with the international toxic equivalent quantity (I-TEQ) value, which suggests that 2,3,4,7,8-PeCDF could act as an I-TEQ indicator.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Medical waste management - A review.

          This paper examines medical waste management, including the common sources, governing legislation and handling and disposal methods. Many developed nations have medical waste legislation, however there is generally little guidance as to which objects can be defined as infectious. This lack of clarity has made sorting medical waste inefficient, thereby increasing the volume of waste treated for pathogens, which is commonly done by incineration. This review highlights that the unnecessary classification of waste as infectious results in higher disposal costs and an increase in undesirable environmental impacts. The review concludes that better education of healthcare workers and standardized sorting of medical waste streams are key avenues for efficient waste management at healthcare facilities, and that further research is required given the trend in increased medical waste production with increasing global GDP.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Catalytic combustion of volatile organic compounds.

              Despite the success of adsorption and thermal incineration of (C)VOC emissions, there is still a need for research on techniques which are both economically more favorable and actually destroy the pollutants rather than merely remove them for recycling elsewhere in the biosphere. The catalytic destruction of (C)VOC to CO2, H2O and HCl/Cl2 appears very promising in this context and is the subject of the present paper. The experiments mainly investigate the catalytic combustion of eight target compounds, all of which are commonly encountered in (C)VOC emissions and/or act as precursors for the formation of PCDD/F. Available literature on the different catalysts active in the oxidation of (C)VOC is reviewed and the transition metal oxide complex V2O5-WO3/TiO2 appears most suitable for the current application. Different reactor geometries (e.g. fixed pellet beds, honeycombs, etc.) are also described. In this research a novel catalyst type is introduced, consisting of a V2O5-WO3/TiO2 coated metal fiber fleece. The conversion of (C)VOC by thermo-catalytic reactions is governed by both reaction kinetics and reaction equilibrium. Full conversion of all investigated VOC to CO2, Cl2, HCl and H2O is thermodynamically feasible within the range of experimental conditions used in this work (260-340 degrees C, feed concentrations 30-60 ppm). A first-order rate equation is proposed for the (C)VOC oxidation reactions. The apparent rate constant is a combination of reaction kinetics and mass transfer effects. The oxidation efficiencies were measured with various (C)VOC in the temperature range of 260-340 degrees C. Literature data for oxidation reactions in fixed beds and honeycomb reactors are included in the assessment. Mass transfer resistances are calculated and are generally negligible for fleece reactors and fixed pellet beds, but can be of importance for honeycomb monoliths. The experimental investigations demonstrate: (i) that the conversion of the hydrocarbons is independent of the oxygen concentration, corresponding to a zero-order dependency of the reaction rate; (ii) that the conversion of the hydrocarbons is a first-order reaction in the (C)VOC; (iii) that the oxidation of the (C)VOC proceeds to a higher extent with increasing temperature, with multiple chlorine substitution enhancing the reactivity; (iv) that the reaction rate constant follows an Arrhenius dependency. The reaction rate constant kr (s(-1)) and the activation energy E (kJ/mol) are determined from the experimental results. The activation energy is related to the characteristics of the (C)VOC under scrutiny and correlated in terms of the molecular weight. The kr-values are system-dependent and hence limited in design application to the specific VOC-catalyst combination being studied. To achieve system-independency, kr-values are transformed into an alternative kinetic constant K (m3/(m2u)) expressed per unit of catalyst surface and thus independent of the amount of catalyst present in the reactor. Largely different experimental data can be fitted in terms of this approach. Results are thereafter used to define the Arrhenius pre-exponential factor A*, itself expressed in terms of the activation entropy. Destruction efficiencies for any given reactor set-up can be predicted from E- and A*-correlations. The excellent comparison of predicted and measured destruction efficiencies for a group of chlorinated aromatics stresses the validity of the design approach. Since laboratory-scale experiments using PCDD/F are impossible, pilot and full-scale tests of PCDD/F oxidation undertaken in Flemish MSWIs and obtained from literature are reported. From the data it is clear that: (i) destruction efficiencies are normally excellent; (ii) the efficiencies increase with increasing operating temperature; (iii) the higher degree of chlorination does not markedly affect the destruction efficiency. Finally, all experimental findings are used in design recommendations for the catalytic oxidation of (C)VOC and PCDD/F. Predicted values of the a)VOC and PCDD/F. Predicted values of the acceptable space velocity correspond with the cited industrial values, thus stressing the validity of the design strategy and equations developed in the present paper.
                Bookmark

                Author and article information

                Journal
                R Soc Open Sci
                R Soc Open Sci
                RSOS
                royopensci
                Royal Society Open Science
                The Royal Society Publishing
                2054-5703
                July 2018
                11 July 2018
                11 July 2018
                : 5
                : 7
                : 172056
                Affiliations
                [1 ]State Key Laboratory of Clean Energy Utilization, Zhejiang University , Hangzhou 310027, People's Republic of China
                [2 ]Zhejiang Fuchunjiang Environmental Technology Research Co. Ltd , Hangzhou 311401, People's Republic of China
                [3 ]National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Group Environmental Remediation Co. Ltd , Beijing 100015, People's Republic of China
                [4 ]College of Health Sciences, Kentucky Christian University , Grayson, KY 41143, USA
                Author notes
                Authors for correspondence: Longjie Ji e-mail: jilongjie@ 123456bceer.com
                Authors for correspondence: Shengyong Lu e-mail: lushy@ 123456zju.edu.cn

                This article has been edited by the Royal Society of Chemistry, including the commissioning, peer review process and editorial aspects up to the point of acceptance.

                Author information
                http://orcid.org/0000-0002-7211-6999
                Article
                rsos172056
                10.1098/rsos.172056
                6083712
                dbfd7087-ad92-48b7-bd32-2c663f0b85b8
                © 2018 The Authors.

                Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.

                History
                : 17 January 2018
                : 7 June 2018
                Funding
                Funded by: National Key Research and Development Program of China;
                Award ID: 2017YFE0107600
                Funded by: Innovative Research Groups of the National Natural Science Foundation of China;
                Award ID: 51621005
                Funded by: National Natural Science Foundation of China, http://dx.doi.org/10.13039/501100001809;
                Award ID: 51706201
                Categories
                1002
                67
                1006
                68
                192
                Chemistry
                Research Article
                Custom metadata
                July, 2018

                hazardous waste incinerator,start-up,normal operation,pcdd/f,memory effect,pcdd/f i-teq indicator

                Comments

                Comment on this article