9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fusion of HIV-1 envelope-expressing cells to human glomerular endothelial cells through an CXCR4-mediated mechanism.

      Pediatric Nephrology (Berlin, Germany)
      Animals, Antigens, CD4, metabolism, Cell Physiological Phenomena, Cells, Cells, Cultured, Endothelial Cells, physiology, HIV-1, HeLa Cells, Humans, Kidney Glomerulus, cytology, Membrane Fusion, Mice, NIH 3T3 Cells, Receptors, CCR5, Receptors, CXCR4, Viral Envelope Proteins

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A central question in the pathogenesis of HIV-associated thrombotic microangiopathic (HIV-TMA) lesions is whether the HIV-1 envelope glycoprotein (HIV-1 Env) can interact directly with human glomerular endothelial cells (HGECs) through specific HIV-1 co-receptors. The goal of this study was to determine whether cultured primary HGECs express significant levels of the major HIV-1 co-receptors CD4, CXCR4, and/or CCR5 to allow fusion interactions with HIV-1. The expression of CD4, CXCR-4 and CCR-5 was assessed in cultured HGECs by reverse transcriptase-polymerase chain reaction (RT-PCR) and flow cytometry using specific antibodies. The HIV-1 Env-mediated membrane fusion of target glomerular cells was evaluated by a fluorescent dye transfer-based cell-cell fusion microscopic method. HGECs express CXCR4 mRNA and protein as determined by RT-PCR and immunostaining with phycoerythrin-conjugated anti-CXCR4 Mab 12G5. CD4 and CCR5 were not detected in HGECs, either by RT-PCR or by surface immunostaining with specific antibodies. Incubation of HGECs with cells expressing a CD4-independent envelope strain (HIV-1IIIB-8x) and the CD4-dependent envelope strain (HIV-1IIIB) resulted in transfer of fluorescent dyes of approximately 20% after 8-16 h incubation at 37 degrees C. Incubation in the presence of inhibitors (C34, which blocks six-helix bundle formation, and AMD3100, which interacts with CXCR4) reduced dye transfer by 60%-80%, confirming that the dye transfer was specific with respect to gp120-gp41-mediated fusion. Cultured primary HGECs express CXCR4 but not CD4 or CCR5. The ability of HGECs to promote fusion by a CD4-independent HIV-1 envelope glycoprotein suggests that these cells may become a potential direct target of certain HIV-1 isolates.

          Related collections

          Author and article information

          Comments

          Comment on this article