10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      microRNA-216b enhances cisplatin-induced apoptosis in osteosarcoma MG63 and SaOS-2 cells by binding to JMJD2C and regulating the HIF1α/HES1 signaling axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Although cisplatin-based chemotherapy represents the standard regimen for osteosarcoma (OS), OS patients often exhibit treatment failure and poor prognosis due to chemoresistance to cisplatin. Emerging research has highlighted the tumor suppressive properties of microRNAs (miRNAs or miRs) in various human cancers via the inhibition of the histone demethylase jumonji domain containing protein 2C (JMJD2C). As a coactivator for hypoxia-inducible factor 1α (HIF1α), JMJD2C targets hairy and enhancer of split-1 (HES1) gene. Hence, the current study aimed to elucidate the role of miR-216b in OS cell cisplatin resistance to identify the underlying mechanism of miR-216b regulating the JMJD2C//HIF1α/HES1 signaling.

          Methods

          Tumor and paracancerous tissues were collected from OS patients to determine the expression patterns of miR-216b and JMJD2C. After ectopic expression and knockdown experiments in the OS cells, CCK-8 assay and flow cytometry were employed to determine cell viability and apoptosis. The interaction of miR-216b, JMJD2C, HIF1α and HES1 was subsequently determined by dual luciferase reporter, co-immunoprecipitation (IP) and ChIP-qPCR assays. In vivo experiments were conducted to further verify the role of the miR-216b in the resistance of OS cells to cisplatin.

          Results

          miR-216b expression was reduced in the OS tissues, as well as the MG63 and SaOS-2 cells. Heightened miR-216b expression was found to be positively correlated with patient survival, and miR-216b further enhanced cisplatin-induced apoptosis of MG63 and SaOS-2 cells. Mechanistically, miR-216b inhibited JMJD2C expression by binding to its 3’UTR. Through interaction with HIF1α, JMJD2C removed the H3K9 methylation modification at the HES1 promoter region, leading to upregulation of HES1 in vitro. Furthermore, miR-216b was observed to increase the tumor growth in nude mice in the presence of cisplatin treatment. HES1 overexpression weakened the effects of miR-216b in MG63 and SaOS-2 cells and in nude mouse xenografts.

          Conclusion

          Overall, miR-216b enhanced the sensitivity of OS cells to cisplatin via downregulation of the JMJD2C/HIF1α/HES1 signaling axis, highlighting the capacity of miR-216b as an adjunct to cisplatin chemotherapy in the treatment of OS.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma

          The cure rate of osteosarcoma has not improved in the past 30 years. The search for new treatments and drugs is urgently needed. Apatinib is a high selectivity inhibitor of vascular endothelial growth factor receptor-2 (VEGFR2) tyrosine kinase, exerting promising antitumoral effect in various tumors. The antitumor effect of Apatinib in human osteosarcoma has never been reported. We investigated the effects of Apatinib in osteosarcoma in vitro and in vivo. Osteosarcoma patients with high levels of VEGFR2 have poor prognosis. Apatinib can inhibit cell growth of osteosarcoma cells. In addition to cycle arrest and apoptosis, Apatinib induces autophagy. Interestingly, inhibition of autophagy increased Apatinib-induced apoptosis in osteosarcoma cells. Immunoprecipitation confirmed direct binding between VEGFR2 and signal transducer and activator of transcription 3 (STAT3). Downregulation of VEGFR2 by siRNA resulted in STAT3 inhibition in KHOS cells. VEGFR2 and STAT3 are inhibited by Apatinib in KHOS cells, and STAT3 act downstream of VEGFR2. STAT3 and BCL-2 were downregulated by Apatinib. STAT3 knockdown by siRNA reinforced autophagy and apoptosis induced by Apatinib. BCL-2 inhibits autophagy and was apoptosis restrained by Apatinib too. Overexpression of BCL-2 decreased Apatinib-induced apoptosis and autophagy. Apatinib repressed the expression of STAT3 and BCL-2 and suppressed the growth of osteosarcoma in vivo. To sum up, deactivation of VEGFR2/STAT3/BCL-2 signal pathway leads to Apatinib-induced growth inhibition of osteosarcoma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics

            Osteosarcoma (OSA) is a rare cancer in people. However OSA incidence rates in dogs are 27 times higher than in people. Prognosis in both species is relatively poor, with 5 year OSA survival rates in people not having improved in decades. For dogs, 1 year survival rates are only around ~ 45%. Improved and novel treatment regimens are urgently required to improve survival in both humans and dogs with OSA. Utilising information from genetic studies could assist in this in both species, with the higher incidence rates in dogs contributing to the dog population being a good model of human disease. This review compares the clinical characteristics, gross morphology and histopathology, aetiology, epidemiology, and genetics of canine and human OSA. Finally, the current position of canine OSA genetic research is discussed and areas for additional work within the canine population are identified.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              lncRNA MIAT functions as a competing endogenous RNA to upregulate DAPK2 by sponging miR-22-3p in diabetic cardiomyopathy

              We previously established a rat model of diabetic cardiomyopathy (DCM) and found that the expression of long non-coding RNA myocardial infarction–associated transcript (MIAT) was significantly upregulated. The present study was aimed to determine the pathologic role of MIAT in the development of DCM. MIAT knockdown was found to reduce cardiomyocyte apoptosis and improve left ventricular function in diabetic rats. High glucose could increase MIAT expression and induce apoptosis in cultured neonatal cardiomyocytes. The results of luciferase reporter assay and RNA immunoprecipitation assay revealed that MIAT was targeted by miR-22-3p in an AGO2-dependent manner. In addition, the 3′-untranslated region of DAPK2 was fused to the luciferase coding region and transfected into HEK293 cells with miR-22-3p mimic, and the results showed that DAPK2 was a direct target of miR-22-3p. Our findings also indicated that MIAT overexpression could counteract the inhibitory effect of miR-22-3p on DAPK2. Moreover, MIAT knockdown was found to reduce DAPK2 expression and inhibit apoptosis in cardiomyocytes exposed to high glucose. In conclusion, our study demonstrates that MIAT may function as a competing endogenous RNA to upregulate DAPK2 expression by sponging miR-22-3p, which consequently leads to cardiomyocyte apoptosis involved in the pathogenesis of DCM.
                Bookmark

                Author and article information

                Contributors
                zwcqdsl@163.com
                Journal
                J Exp Clin Cancer Res
                J. Exp. Clin. Cancer Res
                Journal of Experimental & Clinical Cancer Research : CR
                BioMed Central (London )
                0392-9078
                1756-9966
                24 September 2020
                24 September 2020
                2020
                : 39
                : 201
                Affiliations
                GRID grid.412538.9, ISNI 0000 0004 0527 0050, Department of Orthopedics, , Shanghai Tenth People’s Hospital, ; No. 301, Yanchang Road, Shanghai, 200072 P.R. China
                Article
                1670
                10.1186/s13046-020-01670-3
                7517798
                32972441
                dc0ed929-7e96-4b70-b4c7-202c161e9e59
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 11 March 2020
                : 10 August 2020
                Funding
                Funded by: General Program of National Natural Science Foundation of China
                Award ID: No. 81572632 & No. 8187100734
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Oncology & Radiotherapy
                microrna-216b,jmjd2c,hif1α,hes1,osteosarcoma,cisplatin
                Oncology & Radiotherapy
                microrna-216b, jmjd2c, hif1α, hes1, osteosarcoma, cisplatin

                Comments

                Comment on this article