11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CXCL13 and Its Receptor CXCR5 in Cancer: Inflammation, Immune Response, and Beyond

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is well-established that the chemokine C-X-C motif ligand 13 (CXCL13) and its receptor, the G-protein coupled receptor (GPCR) CXCR5, play fundamental roles in inflammatory, infectious and immune responses. Originally identified as a B-cell chemoattractant, CXCL13 exerts important functions in lymphoid neogenesis, and has been widely implicated in the pathogenesis of a number of autoimmune diseases and inflammatory conditions, as well as in lymphoproliferative disorders. Current evidence also indicates that the CXCL13:CXCR5 axis orchestrates cell-cell interactions that regulate lymphocyte infiltration within the tumor microenvironment, thereby determining responsiveness to cytotoxic and immune-targeted therapies. In this review, we provide a comprehensive perspective of the involvement of CXCL13 and its receptor in cancer progression. Studies in recent years postulated novel roles for this chemokine in controlling the cancer cell phenotype, and suggest important functions in the growth and metastatic dissemination of solid tumors. Carcinogens have been found to induce CXCL13 production, and production of this chemokine within the tumor milieu has been shown to impact the proliferation, migration, and invasive properties of cancer cells. Thus, the complex networks of cellular interactions involving tumoral CXCL13 and CXCR5 integrate to promote cancer cell autonomous and non-autonomous responses, highlighting the relevance of autocrine and paracrine interactions in dictating the cancer phenotype. Dissecting the molecular and signaling events regulated by CXCL13 and how this chemokine dynamically controls the interaction between the cancer cell and the tumor microenvironment is key to identify novel effectors and therapeutic targets for cancer treatment.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: not found
          • Article: not found

          Chemokines: a new classification system and their role in immunity.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemokines and chemokine receptors: new insights into cancer-related inflammation.

            Chemokines are involved in cellular interactions and tropism in situations frequently associated with inflammation. Recently, the importance of chemokines and chemokine receptors in inflammation associated with carcinogenesis has been highlighted. Increasing evidence suggests that chemokines are produced by tumor cells as well as by cells of the tumor microenvironment including cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), endothelial cells, tumor-associated macrophages (TAMs) and more recently tumor-associated neutrophils (TANs). In addition to affecting tumor cell proliferation, angiogenesis and metastasis, chemokines also seem to modulate senescence and cell survival. Here, we review recent progress on the roles of chemokines and chemokine receptors in cancer-related inflammation, and discuss the mechanisms underlying chemokine action in cancer that might facilitate the development of novel therapies in the future. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling.

              In vitro data suggest that a subgroup of NLR proteins, including NLRP12, inhibits the transcription factor NF-κB, although physiologic and disease-relevant evidence is largely missing. Dysregulated NF-κB activity is associated with colonic inflammation and cancer, and we found Nlrp12(-/-) mice were highly susceptible to colitis and colitis-associated colon cancer. Polyps isolated from Nlrp12(-/-) mice showed elevated noncanonical NF-κB activation and increased expression of target genes that were associated with cancer, including Cxcl13 and Cxcl12. NLRP12 negatively regulated ERK and AKT signaling pathways in affected tumor tissues. Both hematopoietic- and nonhematopoietic-derived NLRP12 contributed to inflammation, but the latter dominantly contributed to tumorigenesis. The noncanonical NF-κB pathway was regulated upon degradation of TRAF3 and activation of NIK. NLRP12 interacted with both NIK and TRAF3, and Nlrp12(-/-) cells have constitutively elevated NIK, p100 processing to p52 and reduced TRAF3. Thus, NLRP12 is a checkpoint of noncanonical NF-κB, inflammation, and tumorigenesis. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                12 July 2019
                2019
                : 10
                : 471
                Affiliations
                Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA, United States
                Author notes

                Edited by: Rosa P. Gomariz, Complutense University of Madrid, Spain

                Reviewed by: Catherine Sautes-Fridman, INSERM U1138 Centre de Recherche des Cordeliers, France; Henrik Oster, Universität zu Lübeck, Germany

                *Correspondence: Mariana Cooke marcooke@ 123456pennmedicine.upenn.edu

                This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2019.00471
                6639976
                31354634
                dc1960a2-6b9f-4702-b423-8a206bb342a0
                Copyright © 2019 Kazanietz, Durando and Cooke.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 June 2019
                : 28 June 2019
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 143, Pages: 15, Words: 12352
                Funding
                Funded by: National Cancer Institute 10.13039/100000054
                Funded by: National Institute of Environmental Health Sciences 10.13039/100000066
                Categories
                Endocrinology
                Review

                Endocrinology & Diabetes
                cxcl13,cxcr5,inflammation,immune responses,cancer progression
                Endocrinology & Diabetes
                cxcl13, cxcr5, inflammation, immune responses, cancer progression

                Comments

                Comment on this article