11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Micromanipulated bivalents can trigger mini-spindle formation in Drosophila melanogaster spermatocyte cytoplasm

      research-article
      The Journal of Cell Biology
      The Rockefeller University Press

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Single (individual) bivalents in cultured Drosophila melanogaster primary spermatocytes were detached from the spindle with a micromanipulation needle and placed in the cytoplasm. Such bivalents are prevented from rejoining the spindle by a natural membrane barrier that surrounds the spindle, but they quickly orient as if on a spindle of their own and the half-bivalents separate in anaphase. Serial section electron microscopy shows that a mini-spindle forms around the cytoplasmic bivalent, i.e., the microtubule density in the vicinity of the bivalent is much greater than in other cytoplasmic regions. This microtubule population cannot be accounted for solely by kinetochore nucleation and/or capture of microtubules. Furthermore, the mini- spindles frequently form at odd angles to the main spindle, so that at least one pole has no relationship to the poles of the main spindle. We conclude that a bivalent, or factors that become associated with the bivalent as a result of the manipulation, can either stabilize microtubules or promote their assembly. The bivalent activates latent microtubule organizing centers, or alternatively, polar organizing material has been passively transported from the main spindle to the cytoplasm by the micromanipulation procedure.

          Related collections

          Author and article information

          Journal
          J Cell Biol
          The Journal of Cell Biology
          The Rockefeller University Press
          0021-9525
          1540-8140
          1 December 1986
          : 103
          : 6
          : 2765-2773
          Article
          87083541
          2114567
          3098743
          dc241bfe-d5aa-45c1-a95d-8bc287de4177
          History
          Categories
          Articles

          Cell biology
          Cell biology

          Comments

          Comment on this article