33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multiresolution monogenic signal analysis using the Riesz-Laplace wavelet transform.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The monogenic signal is the natural 2-D counterpart of the 1-D analytic signal. We propose to transpose the concept to the wavelet domain by considering a complexified version of the Riesz transform which has the remarkable property of mapping a real-valued (primary) wavelet basis of L(2) (R(2)) into a complex one. The Riesz operator is also steerable in the sense that it give access to the Hilbert transform of the signal along any orientation. Having set those foundations, we specify a primary polyharmonic spline wavelet basis of L(2) (R(2)) that involves a single Mexican-hat-like mother wavelet (Laplacian of a B-spline). The important point is that our primary wavelets are quasi-isotropic: they behave like multiscale versions of the fractional Laplace operator from which they are derived, which ensures steerability. We propose to pair these real-valued basis functions with their complex Riesz counterparts to specify a multiresolution monogenic signal analysis. This yields a representation where each wavelet index is associated with a local orientation, an amplitude and a phase. We give a corresponding wavelet-domain method for estimating the underlying instantaneous frequency. We also provide a mechanism for improving the shift and rotation-invariance of the wavelet decomposition and show how to implement the transform efficiently using perfect-reconstruction filterbanks. We illustrate the specific feature-extraction capabilities of the representation and present novel examples of wavelet-domain processing; in particular, a robust, tensor-based analysis of directional image patterns, the demodulation of interferograms, and the reconstruction of digital holograms.

          Related collections

          Author and article information

          Journal
          IEEE Trans Image Process
          IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
          Institute of Electrical and Electronics Engineers (IEEE)
          1941-0042
          1057-7149
          Nov 2009
          : 18
          : 11
          Affiliations
          [1 ] Biomedical Imaging Group (BIG), Ecole PolytechniqueFédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. michael.unser@epfl.ch
          Article
          10.1109/TIP.2009.2027628
          19605325
          dc24df7e-b2dd-4a37-b57a-6ec9672d25d9
          History

          Comments

          Comment on this article