21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Radiation-induced signaling pathways that promote cancer cell survival (Review)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Radiation therapy is a staple cancer treatment approach that has significantly improved local disease control and the overall survival of cancer patients. However, its efficacy is still limited by the development of radiation resistance and the presence of residual disease after therapy that leads to cancer recurrence. Radiation impedes cancer cell growth by inducing cytotoxicity, mainly caused by DNA damage. However, radiation can also simultaneously induce multiple pro-survival signaling pathways, such as those mediated by AKT, ERK and ATM/ATR, which can lead to suppression of apoptosis, induction of cell cycle arrest and/or initiation of DNA repair. These signaling pathways act conjointly to reduce the magnitude of radiation-induced cytotoxicity and promote the development of radioresistance in cancer cells. Thus, targeting these pro-survival pathways has great potential for the radiosensitization of cancer cells. In the present review, we summarize the current literature on how these radiation-activated signaling pathways promote cancer cell survival.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          DNA repair mechanisms in dividing and non-dividing cells.

          DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease. Published by Elsevier B.V.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms.

            A mechanism by which the Ras-mitogen-activated protein kinase (MAPK) signaling pathway mediates growth factor-dependent cell survival was characterized. The MAPK-activated kinases, the Rsks, catalyzed the phosphorylation of the pro-apoptotic protein BAD at serine 112 both in vitro and in vivo. The Rsk-induced phosphorylation of BAD at serine 112 suppressed BAD-mediated apoptosis in neurons. Rsks also are known to phosphorylate the transcription factor CREB (cAMP response element-binding protein) at serine 133. Activated CREB promoted cell survival, and inhibition of CREB phosphorylation at serine 133 triggered apoptosis. These findings suggest that the MAPK signaling pathway promotes cell survival by a dual mechanism comprising the posttranslational modification and inactivation of a component of the cell death machinery and the increased transcription of pro-survival genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Participation of p53 protein in the cellular response to DNA damage.

              The inhibition of replicative DNA synthesis that follows DNA damage may be critical for avoiding genetic lesions that could contribute to cellular transformation. Exposure of ML-1 myeloblastic leukemia cells to nonlethal doses of the DNA damaging agents, gamma-irradiation or actinomycin D, causes a transient inhibition of replicative DNA synthesis via both G1 and G2 arrests. Levels of p53 protein in ML-1 cells and in proliferating normal bone marrow myeloid progenitor cells increase and decrease in temporal association with the G1 arrest. In contrast, the S-phase arrest of ML-1 cells caused by exposure to the anti-metabolite, cytosine arabinoside, which does not directly damage DNA, is not associated with a significant change in p53 protein levels. Caffeine treatment blocks both the G1 arrest and the induction of p53 protein after gamma-irradiation, thus suggesting that blocking the induction of p53 protein may contribute to the previously observed effects of caffeine on cell cycle changes after DNA damage. Unlike ML-1 cells and normal bone marrow myeloid progenitor cells, hematopoietic cells that either lack p53 gene expression or overexpress a mutant form of the p53 gene do not exhibit a G1 arrest after gamma-irradiation; however, the G2 arrest is unaffected by the status of the p53 gene. These results suggest a role for the wild-type p53 protein in the inhibition of DNA synthesis that follows DNA damage and thus suggest a new mechanism for how the loss of wild-type p53 might contribute to tumorigenesis.
                Bookmark

                Author and article information

                Journal
                Int J Oncol
                Int. J. Oncol
                IJO
                International Journal of Oncology
                D.A. Spandidos
                1019-6439
                1791-2423
                November 2014
                20 August 2014
                20 August 2014
                : 45
                : 5
                : 1813-1819
                Affiliations
                Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
                Author notes
                Correspondence to: Dr Ying Yan, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA, E-mail: yyan@ 123456unmc.edu . Dr Michel M. Ouellette, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA, E-mail: mouellet@ 123456unmc.edu
                Article
                ijo-45-05-1813
                10.3892/ijo.2014.2614
                4203326
                25174607
                dc316c92-d3d1-4b51-9ab0-85fa14e54acb
                Copyright © 2014, Spandidos Publications

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 18 June 2014
                : 01 August 2014
                Categories
                Articles

                radiation therapy,signaling pathways,cell cycle checkpoint,dna repair,cell survival

                Comments

                Comment on this article