Blog
About

11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Understanding the Functions of Long Non-Coding RNAs through Their Higher-Order Structures

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although thousands of long non-coding RNAs (lncRNAs) have been discovered in eukaryotes, very few molecular mechanisms have been characterized due to an insufficient understanding of lncRNA structure. Therefore, investigations of lncRNA structure and subsequent elucidation of the regulatory mechanisms are urgently needed. However, since lncRNA are high molecular weight molecules, which makes their crystallization difficult, obtaining information about their structure is extremely challenging, and the structures of only several lncRNAs have been determined so far. Here, we review the structure–function relationships of the widely studied lncRNAs found in the animal and plant kingdoms, focusing on the principles and applications of both in vitro and in vivo technologies for the study of RNA structures, including dimethyl sulfate-sequencing (DMS-seq), selective 2′-hydroxyl acylation analyzed by primer extension-sequencing (SHAPE-seq), parallel analysis of RNA structure (PARS), and fragmentation sequencing (FragSeq). The aim of this review is to provide a better understanding of lncRNA biological functions by studying them at the structural level.

          Related collections

          Most cited references 116

          • Record: found
          • Abstract: found
          • Article: not found

          Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis

          Large intervening noncoding RNAs (lincRNAs) are pervasively transcribed in the genome1, 2, 3 yet their potential involvement in human disease is not well understood4,5. Recent studies of dosage compensation, imprinting, and homeotic gene expression suggest that individual lincRNAs can function as the interface between DNA and specific chromatin remodeling activities6,7,8. Here we show that lincRNAs in the HOX loci become systematically dysregulated during breast cancer progression. The lincRNA termed HOTAIR is increased in expression in primary breast tumors and metastases, and HOTAIR expression level in primary tumors is a powerful predictor of eventual metastasis and death. Enforced expression of HOTAIR in epithelial cancer cells induced genome-wide re-targeting of Polycomb Repressive Complex 2 (PRC2) to an occupancy pattern more resembling embryonic fibroblasts, leading to altered histone H3 lysine 27 methylation, gene expression, and increased cancer invasiveness and metastasis in a manner dependent on PRC2. Conversely, loss of HOTAIR can inhibit cancer invasiveness, particularly in cells that possess excessive PRC2 activity. These findings suggest that lincRNAs play active roles in modulating the cancer epigenome and may be important targets for cancer diagnosis and therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression.

            The human genome contains many thousands of long noncoding RNAs (lncRNAs). While several studies have demonstrated compelling biological and disease roles for individual examples, analytical and experimental approaches to investigate these genes have been hampered by the lack of comprehensive lncRNA annotation. Here, we present and analyze the most complete human lncRNA annotation to date, produced by the GENCODE consortium within the framework of the ENCODE project and comprising 9277 manually annotated genes producing 14,880 transcripts. Our analyses indicate that lncRNAs are generated through pathways similar to that of protein-coding genes, with similar histone-modification profiles, splicing signals, and exon/intron lengths. In contrast to protein-coding genes, however, lncRNAs display a striking bias toward two-exon transcripts, they are predominantly localized in the chromatin and nucleus, and a fraction appear to be preferentially processed into small RNAs. They are under stronger selective pressure than neutrally evolving sequences-particularly in their promoter regions, which display levels of selection comparable to protein-coding genes. Importantly, about one-third seem to have arisen within the primate lineage. Comprehensive analysis of their expression in multiple human organs and brain regions shows that lncRNAs are generally lower expressed than protein-coding genes, and display more tissue-specific expression patterns, with a large fraction of tissue-specific lncRNAs expressed in the brain. Expression correlation analysis indicates that lncRNAs show particularly striking positive correlation with the expression of antisense coding genes. This GENCODE annotation represents a valuable resource for future studies of lncRNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Landscape of transcription in human cells

              Summary Eukaryotic cells make many types of primary and processed RNAs that are found either in specific sub-cellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic sub-cellular localizations are also poorly understood. Since RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell’s regulatory capabilities are focused on its synthesis, processing, transport, modifications and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations taken together prompt to a redefinition of the concept of a gene.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                17 May 2016
                May 2016
                : 17
                : 5
                Affiliations
                Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; spxylirui@ 123456cau.edu.cn (R.L.); lyb@ 123456cau.edu.cn (Y.L.)
                Author notes
                [* ]Correspondence: hlzhu@ 123456cau.edu.cn ; Tel./Fax: +86-10-6273-7571
                Article
                ijms-17-00702
                10.3390/ijms17050702
                4881525
                27196897
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Review

                Molecular biology

                technologies, long non-coding rna, molecular mechanisms, structure, function

                Comments

                Comment on this article