53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Asymptomatic humans transmit dengue virus to mosquitoes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Three-quarters of the estimated 390 million dengue virus (DENV) infections each year are clinically inapparent. People with inapparent dengue virus infections are generally considered dead-end hosts for transmission because they do not reach sufficiently high viremia levels to infect mosquitoes. Here, we show that, despite their lower average level of viremia, asymptomatic people can be infectious to mosquitoes. Moreover, at a given level of viremia, DENV-infected people with no detectable symptoms or before the onset of symptoms are significantly more infectious to mosquitoes than people with symptomatic infections. Because DENV viremic people without clinical symptoms may be exposed to more mosquitoes through their undisrupted daily routines than sick people and represent the bulk of DENV infections, our data indicate that they have the potential to contribute significantly more to virus transmission to mosquitoes than previously recognized.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          House-to-house human movement drives dengue virus transmission.

          Dengue is a mosquito-borne disease of growing global health importance. Prevention efforts focus on mosquito control, with limited success. New insights into the spatiotemporal drivers of dengue dynamics are needed to design improved disease-prevention strategies. Given the restricted range of movement of the primary mosquito vector, Aedes aegypti, local human movements may be an important driver of dengue virus (DENV) amplification and spread. Using contact-site cluster investigations in a case-control design, we demonstrate that, at an individual level, risk for human infection is defined by visits to places where contact with infected mosquitoes is likely, independent of distance from the home. Our data indicate that house-to-house human movements underlie spatial patterns of DENV incidence, causing marked heterogeneity in transmission rates. At a collective level, transmission appears to be shaped by social connections because routine movements among the same places, such as the homes of family and friends, are often similar for the infected individual and their contacts. Thus, routine, house-to-house human movements do play a key role in spread of this vector-borne pathogen at fine spatial scales. This finding has important implications for dengue prevention, challenging the appropriateness of current approaches to vector control. We argue that reexamination of existing paradigms regarding the spatiotemporal dynamics of DENV and other vector-borne pathogens, especially the importance of human movement, will lead to improvements in disease prevention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Defining Challenges and Proposing Solutions for Control of the Virus Vector Aedes aegypti

            If done properly, say the authors,Aedes aegypti suppression is a practical method to control urban dengue, yellow fever, and chikungunya viruses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of flavivirus universal primer pairs and development of a rapid, highly sensitive heminested reverse transcription-PCR assay for detection of flaviviruses targeted to a conserved region of the NS5 gene sequences.

              Arthropod-transmitted flaviviruses are responsible for considerable morbidity and mortality, causing severe encephalitic, hemorrhagic, and febrile illnesses in humans. Because there are no specific clinical symptoms for infection by a determined virus and because different arboviruses could be present in the same area, a genus diagnosis by PCR would be a useful first-line diagnostic method. The six published Flavivirus genus primer pairs localized in the NS1, NS3, NS5, and 3' NC regions were evaluated in terms of specificity and sensitivity with flaviviruses (including the main viruses pathogenic for humans) at a titer of 10(5) 50% tissue culture infectious doses (TCID(50)s) ml(-1) with a common identification step by agarose gel electrophoresis. Only one NS5 primer pair allowed the detection of all tested flaviviruses with the sensitivity limit of 10(5) TCID(50)s ml(-1). Using a heminested PCR with new primers designed in the same region after an alignment of 30 different flaviviruses, the sensitivity of reverse transcription-PCR was improved and allowed the detection of about 200 infectious doses ml(-1) with all of the tick- and mosquito-borne flaviviruses tested. It was confirmed that the sequenced amplified products in the NS5 region allowed predictability of flavivirus species by dendrogram, including the New York 99 West Nile strain. This technique was successfully performed with a cerebrospinal fluid sample from a patient hospitalized with West Nile virus encephalitis.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                November 24 2015
                November 24 2015
                November 24 2015
                November 09 2015
                : 112
                : 47
                : 14688-14693
                Article
                10.1073/pnas.1508114112
                26553981
                dc39a386-44d2-41e0-9364-eabdd47693ac
                © 2015
                History

                Comments

                Comment on this article