0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Contamination and ecological risk assessment of heavy metals in street dust of Tehran, Iran

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sources and properties of non-exhaust particulate matter from road traffic: a review.

            While emissions control regulation has led to a substantial reduction in exhaust emissions from road traffic, currently non-exhaust emissions from road vehicles are unabated. These include particles from brake wear, tyre wear, road surface abrasion and resuspension in the wake of passing traffic. Quantification of the magnitude of such emissions is problematic both in the laboratory and the field and the latter depends heavily upon a knowledge of the physical and chemical properties of non-exhaust particles. This review looks at each source in turn, reviewing the available information on the source materials and particles derived from them in laboratory studies. In a final section, some of the key publications dealing with measurements in road tunnels and the roadside environment are reviewed. It is concluded that with the exception of brake dust particles which may be identified from their copper (Cu) and antimony (Sb) content, unequivocal identification of particles from other sources is likely to prove extremely difficult, either because of the lack of suitable tracer elements or compounds, or because of the interactions between sources prior to the emission process. Even in the case of brake dust, problems will arise in distinguishing directly emitted particles from those arising from resuspension of deposited brake dust from the road surface, or that derived from entrainment of polluted roadside soils, either directly or as a component of road surface dust.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China.

              Surface soil samples from 36 sampling sites including different functional areas in seven districts of Shenyang, China were collected and analyzed. The results showed that the average concentrations of Cd, Cu, Pb and Zn in soil of Shenyang were up to 0.42, 51.26, 75.29 and 140.02mg/kg, respectively, which are much higher than their natural background values. Among the functional areas and administrative regions, the industrial regions and the Tiexi District displayed the highest metal concentrations. Pearson's correlation analysis showed that there existed close correlations among Cd, Cu, Pb and Zn (except for Cd-Cu) at 1% level. Principal Component Analysis (PCA) coupled with correlation between heavy metals revealed that heavy metal contamination might originate from traffic and industrial activities. The values of pollution index (PI) and integrated pollution index (IPI) indicated that metal pollution level was Pb>Cd>Zn>Cu, and Cd, Cu, Pb and Zn belong to moderate or high pollution level. Potential ecological risk indexes (RI) further indicated that Shenyang was suffering from serious metal contamination. These results are important for the development of proper management strategies to decrease non-point source pollution by various remediation practices in Shenyang, China.
                Bookmark

                Author and article information

                Journal
                International Journal of Environmental Science and Technology
                Int. J. Environ. Sci. Technol.
                Springer Science and Business Media LLC
                1735-1472
                1735-2630
                December 2017
                April 26 2017
                December 2017
                : 14
                : 12
                : 2675-2682
                Article
                10.1007/s13762-017-1327-x
                dc3ac062-a19a-4b1a-843f-a91ccbeaedf2
                © 2017

                http://www.springer.com/tdm


                Comments

                Comment on this article