28
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The neonatal marmoset monkey ovary is very primitive exhibiting many oogonia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oogonia are characterized by diploidy and mitotic proliferation. Human and mouse oogonia express several factors such as OCT4, which are characteristic of pluripotent cells. In human, almost all oogonia enter meiosis between weeks 9 and 22 of prenatal development or undergo mitotic arrest and subsequent elimination from the ovary. As a consequence, neonatal human ovaries generally lack oogonia. The same was found in neonatal ovaries of the rhesus monkey, a representative of the old world monkeys (Catarrhini). By contrast, proliferating oogonia were found in adult prosimians (now called Strepsirrhini), which is a group of ‘lower’ primates. The common marmoset monkey ( Callithrix jacchus) belongs to the new world monkeys (Platyrrhini) and is increasingly used in reproductive biology and stem cell research. However, ovarian development in the marmoset monkey has not been widely investigated. Herein, we show that the neonatal marmoset ovary has an extremely immature histological appearance compared with the human ovary. It contains numerous oogonia expressing the pluripotency factors OCT4A, SALL4, and LIN28A (LIN28). The pluripotency factor-positive germ cells also express the proliferation marker MKI67 (Ki-67), which has previously been shown in the human ovary to be restricted to premeiotic germ cells. Together, the data demonstrate the primitiveness of the neonatal marmoset ovary compared with human. This study may introduce the marmoset monkey as a non-human primate model to experimentally study the aspects of primate primitive gonad development, follicle assembly, and germ cell biology in vivo.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Derivation of pluripotent stem cells from cultured human primordial germ cells.

          Human pluripotent stem cells would be invaluable for in vitro studies of aspects of human embryogenesis. With the goal of establishing pluripotent stem cell lines, gonadal ridges and mesenteries containing primordial germ cells (PGCs, 5-9 weeks postfertilization) were cultured on mouse STO fibroblast feeder layers in the presence of human recombinant leukemia inhibitory factor, human recombinant basic fibroblast growth factor, and forskolin. Initially, single PGCs in culture were visualized by alkaline phosphatase activity staining. Over a period of 7-21 days, PGCs gave rise to large multicellular colonies resembling those of mouse pluripotent stem cells termed embryonic stem and embryonic germ (EG) cells. Throughout the culture period most cells within the colonies continued to be alkaline phosphatase-positive and tested positive against a panel of five immunological markers (SSEA-1, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81) that have been used routinely to characterize embryonic stem and EG cells. The cultured cells have been continuously passaged and found to be karyotypically normal and stable. Both XX and XY cell cultures have been obtained. Immunohistochemical analysis of embryoid bodies collected from these cultures revealed a wide variety of differentiated cell types, including derivatives of all three embryonic germ layers. Based on their origin and demonstrated properties, these human PGC-derived cultures meet the criteria for pluripotent stem cells and most closely resemble EG cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The human VASA gene is specifically expressed in the germ cell lineage.

            To understand the origins and function of the human germ cell lineage and to identify germ cell-specific markers we have isolated a human ortholog of the Drosophila gene vasa. The gene was mapped to human chromosome 5q (near the centromere) by radiation hybrid mapping. We show by Northern analysis of fetal and adult tissues that expression of the human VASA gene is restricted to the ovary and testis and is undetectable in somatic tissues. We generated polyclonal antibodies that bind to the VASA protein in formalin-fixed, paraffin-embedded tissue and characterized VASA protein expression in human germ cells at various stages of development. The VASA protein is cytoplasmic and expressed in migratory primordial germ cells in the region of the gonadal ridge. VASA protein is present in fetal and adult gonadal germ cells in both males and females and is most abundant in spermatocytes and mature oocytes. The gene we have isolated is thus a highly specific marker of germ cells and should be useful for studies of human germ cell determination and function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Conserved and divergent patterns of expression of DAZL, VASA and OCT4 in the germ cells of the human fetal ovary and testis

              Background Germ cells arise from a small group of cells that express markers of pluripotency including OCT4. In humans formation of gonadal compartments (cords in testis, nests in ovary) takes place during the 1st trimester (6–8 weeks gestation). In the 2nd trimester germ cells can enter meiotic prophase in females whereas in males this does not occur until puberty. We have used qRTPCR, Westerns and immunohistochemical profiling to determine which of the germ cell subtypes in the human fetal gonads express OCT4, DAZL and VASA, as these have been shown to play an essential role in germ cell maturation in mice. Results OCT4 mRNA and protein were detected in extracts from both 1st and 2nd trimester ovaries and testes. In ovarian extracts a marked increase in expression of VASA and DAZL mRNA and protein occurred in the 2nd trimester. In testicular extracts VASA mRNA and protein were low/undetectable in 1st trimester and increased in the 2nd trimester whereas the total amount of DAZL did not seem to change. During the 1st trimester, germ cells were OCT4 positive but did not express VASA. These results are in contrast to the situation in mice where expression of Vasa is initiated in Oct4 positive primordial germ cells as they enter the gonadal ridge. In the 2nd trimester germ cells with intense cytoplasmic staining for VASA were present in both sexes; these cells were OCT4 negative. DAZL expression overlapped with both OCT4 and VASA and changed from the nuclear to the cytoplasmic compartment as cells became OCT4-negative. In males, OCT4-positive and VASA-positive subpopulations of germ cells coexisted within the same seminiferous cords but in the ovary there was a distinct spatial distribution of cells with OCT4 expressed by smaller, peripherally located, germ cells whereas DAZL and VASA were immunolocalised to larger (more mature) centrally located cells. Conclusion OCT4, DAZL and VASA are expressed by human fetal germ cells but their patterns of expression are temporally and spatially distinct. In the 1st trimester OCT4 was detected in most germ cells. In the 2nd trimester the onset of expression of VASA was associated with the formation of oocytes and spermatogonia both of which were OCT-4 negative. Relocation of DAZL from nucleus to cytoplasm paralleled the down regulation of OCT4 and the onset of expression of VASA. These data reveal similarities between the expression of key regulatory proteins within germ cells as they mature in male and female fetal human gonads suggesting that in the female these maturational changes are not determined by entry into meiosis.
                Bookmark

                Author and article information

                Journal
                Reproduction
                Reproduction
                REPRO
                Reproduction (Cambridge, England)
                Bioscientifica Ltd (Bristol )
                1470-1626
                1741-7899
                August 2014
                24 March 2014
                : 148
                : 2
                : 237-247
                Affiliations
                [1]Stem Cell Biology Unit German Primate Center – Leibniz Institute for Primate Research Kellnerweg 4, Göttingen, 37077Germany
                [1 ]Centre of Reproductive Medicine and Andrology University of Münster Domagkstraße 11, Münster, 48149Germany
                Author notes
                Correspondence should be addressed to R Behr rbehr@ 123456dpz.eu
                Article
                REP140068
                10.1530/REP-14-0068
                4086814
                24840529
                dc3bfd03-461b-4a4c-971f-c572008be96a
                © 2014 The authors

                This work is licensed under a Creative Commons Attribution 3.0 Unported License

                History
                : 6 February 2014
                : 13 May 2014
                : 19 May 2014
                Categories
                Research

                Obstetrics & Gynecology
                Obstetrics & Gynecology

                Comments

                Comment on this article