17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toxicity Research of PM 2.5 Compositions in Vitro

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          According to the published literature, we surmise that particulate matter (PM) concentration, individually, may be less important than components in explaining health effects. PM 2.5 (aerodynamic diameter < 2.5 μm) had similar cytotoxicity (e.g., cell viability reduction, oxidative damage, inflammatory effects and genetic toxicity) on different types of cells. The studies of cells are readily available for detailed mechanistic investigations, which is more appropriate for learning and comparing the mechanism caused by single or mixed ingredients coating a carbon core. No review exists that holistically examines the evidence from all components-based in vitro studies. We reviewed published studies that focus on the cytotoxicity of normal PM 2.5. Those studies suggested that the toxicity of mixed compositions differs greatly from the single ingredients in mixed components and the target cells. The cytotoxic responses caused by PM 2.5 components have not shown a consistent association with clear, specific health effects. The results may be beneficial for providing new targets for drugs for the treatment of PM 2.5-related diseases.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          In vitro toxicity of particulate matter (PM) collected at different sites in the Netherlands is associated with PM composition, size fraction and oxidative potential - the RAPTES project

          Background Ambient particulate matter (PM) exposure is associated with respiratory and cardiovascular morbidity and mortality. To what extent such effects are different for PM obtained from different sources or locations is still unclear. This study investigated the in vitro toxicity of ambient PM collected at different sites in the Netherlands in relation to PM composition and oxidative potential. Method PM was sampled at eight sites: three traffic sites, an underground train station, as well as a harbor, farm, steelworks, and urban background location. Coarse (2.5-10 μm), fine (< 2.5 μm) and quasi ultrafine PM (qUF; < 0.18 μm) were sampled at each site. Murine macrophages (RAW 264.7 cells) were exposed to increasing concentrations of PM from these sites (6.25-12.5-25-50-100 μg/ml; corresponding to 3.68-58.8 μg/cm2). Following overnight incubation, MTT-reduction activity (a measure of metabolic activity) and the release of pro-inflammatory markers (Tumor Necrosis Factor-alpha, TNF-α; Interleukin-6, IL-6; Macrophage Inflammatory Protein-2, MIP-2) were measured. The oxidative potential and the endotoxin content of each PM sample were determined in a DTT- and LAL-assay respectively. Multiple linear regression was used to assess the relationship between the cellular responses and PM characteristics: concentration, site, size fraction, oxidative potential and endotoxin content. Results Most PM samples induced a concentration-dependent decrease in MTT-reduction activity and an increase in pro-inflammatory markers with the exception of the urban background and stop & go traffic samples. Fine and qUF samples of traffic locations, characterized by a high concentration of elemental and organic carbon, induced the highest pro-inflammatory activity. The pro-inflammatory response to coarse samples was associated with the endotoxin level, which was found to increase dramatically during a three-day sample concentration procedure in the laboratory. The underground samples, characterized by a high content of transition metals, showed the largest decrease in MTT-reduction activity. PM size fraction was not related to MTT-reduction activity, whereas there was a statistically significant difference in pro-inflammatory activity between Fine and qUF PM. Furthermore, there was a statistically significant negative association between PM oxidative potential and MTT-reduction activity. Conclusion The response of RAW264.7 cells to ambient PM was markedly different using samples collected at various sites in the Netherlands that differed in their local PM emission sources. Our results are in support of other investigations showing that the chemical composition as well as oxidative potential are determinants of PM induced toxicity in vitro.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved

            Background This study explores and characterizes cell cycle alterations induced by urban PM2.5 in the human epithelial cell line BEAS-2B, and elucidates possible mechanisms involved. Methods The cells were exposed to a low dose (7.5 μg/cm2) of Milan winter PM2.5 for different time points, and the cell cycle progression was analyzed by fluorescent microscopy and flow cytometry. Activation of proteins involved in cell cycle control was investigated by Western blotting and DNA damage by 32P-postlabelling, immunostaining and comet assay. The formation of reactive oxygen species (ROS) was quantified by flow cytometry. The role of PM organic fraction versus washed PM on the cell cycle alterations was also examined. Finally, the molecular pathways activated were further examined using specific inhibitors. Results Winter PM2.5 induced marked cell cycle alteration already after 3 h of exposure, represented by an increased number of cells (transient arrest) in G2. This effect was associated with an increased phosphorylation of Chk2, while no changes in p53 phosphorylation were observed at this time point. The increase in G2 was followed by a transient arrest in the metaphase/anaphase transition point (10 h), which was associated with the presence of severe mitotic spindle aberrations. The metaphase/anaphase delay was apparently followed by mitotic slippage at 24 h, resulting in an increased number of tetraploid G1 cells and cells with micronuclei (MN), and by apoptosis at 40 h. Winter PM2.5 increased the level of ROS at 2 h and DNA damage (8-oxodG, single- and double stand breaks) was detected after 3 h of exposure. The PM organic fraction caused a similar G2/M arrest and augmented ROS formation, while washed PM had no such effects. DNA adducts were detected after 24 h. Both PM-induced DNA damage and G2 arrest were inhibited by the addition of antioxidants and α-naphthoflavone, suggesting the involvement of ROS and reactive electrophilic metabolites formed via a P450-dependent reaction. Conclusions Milan winter PM2.5 rapidly induces severe cell cycle alterations, resulting in increased frequency of cells with double nuclei and MN. This effect is related to the metabolic activation of PM2.5 organic chemicals, which cause damages to DNA and spindle apparatus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells.

              Air pollution in Milan causes health concern due to the high concentrations of particulate matter (PM10 and PM2.5). The aim of this study was to investigate possible seasonal differences in PM10 and PM2.5 chemical composition and their biological effects on pro-inflammatory cytokine release and cytotoxicity. The PM was sampled during winter and summer seasons. The winter PMs had higher levels of PAHs than the summer samples which contained a greater amount of mineral dust elements. The PM toxicity was tested in the human pulmonary epithelial cell lines BEAS-2B and A549. The winter PMs were more cytotoxic than summer samples, whereas the summer PM10 exhibited a higher pro-inflammatory potential, as measured by ELISA. This inflammatory potential seemed partly due to biological components such as bacterial lipopolysaccharides (LPS), as evaluated by the use of Polymixin B. Interestingly, in the BEAS-2B cells the winter PM2.5 reduced proliferation due to a mitotic delay/arrest, while no such effects were observed in the A549 cells. These results underline that the in vitro responsiveness to PM may be cell line dependent and suggest that the PM different properties may trigger different endpoints such as inflammation, perturbation of cell cycle and cell death.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                26 February 2017
                March 2017
                : 14
                : 3
                : 232
                Affiliations
                [1 ]Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
                [2 ]Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun 130021, China; jiayy14@ 123456mails.jlu.edu.cn (Y.-Y.J.); wangqi15@ 123456mails.jlu.edu.cn (Q.W.)
                Author notes
                [* ]Correspondence: iamliute@ 123456126.com ; Tel.: +86-431-8561-9453; Fax: +86-431-8987-6666
                Article
                ijerph-14-00232
                10.3390/ijerph14030232
                5369068
                28245639
                dc414e14-d8e0-4823-b715-559987c2bb9e
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 December 2016
                : 23 February 2017
                Categories
                Review

                Public health
                cell,particular matter,components,toxicology,health
                Public health
                cell, particular matter, components, toxicology, health

                Comments

                Comment on this article