2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Withanolide D Enhances Radiosensitivity of Human Cancer Cells by Inhibiting DNA Damage Non-homologous End Joining Repair Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Along with surgery and chemotherapy, radiation therapy (RT) is an important modality in cancer treatment, and the development of radiosensitizers is a current key challenge in radiobiology to maximize RT efficiency. In this study, the radiosensitizing effect of a natural compound from the withanolide family, withanolide D (WD), was assessed. Clonogenic assays showed that a 1 h WD pretreatment (0.7 μM) before irradiation decreased the surviving fraction of several cancer cell lines. To determine the mechanisms by which WD achieved its radiosensitizing effect, we then assessed whether WD could promote radiation-induced DNA damages and inhibit double-strand breaks (DSBs) repair in SKOV3 cells. Comet and γH2AX/53BP1 foci formation assays confirmed that DSBs were higher between 1 and 24 h after 2 Gy-irradiation in WD-treated cells compared to vehicle-treated cells, suggesting that WD induced the persistence of radiation-induced DNA damages. Immunoblotting was then performed to investigate protein expression involved in DNA repair pathways. Interestingly, DNA-PKc, ATM, and their phosphorylated forms appeared to be inhibited 24 h post-irradiation in WD-treated samples. XRCC4 expression was also down-regulated while RAD51 expression did not change compared to vehicle-treated cells suggesting that only non-homologous end joining (NHEJ) pathways was inhibited by WD. Mitotic catastrophe (MC) was then investigated in SKOV3, a p53-deficient cell line, to assess the consequence of such inhibition. MC was induced after irradiation and was predominant in WD-treated samples as shown by the few numbers of cells pursuing into anaphase and the increased amount of bipolar metaphasic cells. Together, these data demonstrated that WD could be a promising radiosensitizer candidate for RT by inhibiting NHEJ pathway and promoting MC. Additional studies are required to better understand its efficiency and mechanism of action in more relevant clinical models.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer.

          DNA damage is a key factor both in the evolution and treatment of cancer. Genomic instability is a common feature of cancer cells, fuelling accumulation of oncogenic mutations, while radiation and diverse genotoxic agents remain important, if imperfect, therapeutic modalities. Cellular responses to DNA damage are coordinated primarily by two distinct kinase signaling cascades, the ATM-Chk2 and ATR-Chk1 pathways, which are activated by DNA double-strand breaks (DSBs) and single-stranded DNA respectively. Historically, these pathways were thought to act in parallel with overlapping functions; however, more recently it has become apparent that their relationship is more complex. In response to DSBs, ATM is required both for ATR-Chk1 activation and to initiate DNA repair via homologous recombination (HRR) by promoting formation of single-stranded DNA at sites of damage through nucleolytic resection. Interestingly, cells and organisms survive with mutations in ATM or other components required for HRR, such as BRCA1 and BRCA2, but at the cost of genomic instability and cancer predisposition. By contrast, the ATR-Chk1 pathway is the principal direct effector of the DNA damage and replication checkpoints and, as such, is essential for the survival of many, although not all, cell types. Remarkably, deficiency for HRR in BRCA1- and BRCA2-deficient tumors confers sensitivity to cisplatin and inhibitors of poly(ADP-ribose) polymerase (PARP), an enzyme required for repair of endogenous DNA damage. In addition, suppressing DNA damage and replication checkpoint responses by inhibiting Chk1 can enhance tumor cell killing by diverse genotoxic agents. Here, we review current understanding of the organization and functions of the ATM-Chk2 and ATR-Chk1 pathways and the prospects for targeting DNA damage signaling processes for therapeutic purposes. Copyright © 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer Radiosensitizers.

            Radiotherapy (RT) is a mainstay treatment for many types of cancer, although it is still a large challenge to enhance radiation damage to tumor tissue and reduce side effects to healthy tissue. Radiosensitizers are promising agents that enhance injury to tumor tissue by accelerating DNA damage and producing free radicals. Several strategies have been exploited to develop highly effective and low-toxicity radiosensitizers. In this review, we highlight recent progress on radiosensitizers, including small molecules, macromolecules, and nanomaterials. First, small molecules are reviewed based on free radicals, pseudosubstrates, and other mechanisms. Second, nanomaterials, such as nanometallic materials, especially gold-based materials that have flexible surface engineering and favorable kinetic properties, have emerged as promising radiosensitizers. Finally, emerging macromolecules have shown significant advantages in RT because these molecules can be combined with biological therapy as well as drug delivery. Further research on the mechanisms of radioresistance and multidisciplinary approaches will accelerate the development of radiosensitizers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Radiation and ceramide-induced apoptosis.

              Ceramide is a sphingolipid that acts as a second messenger in ubiquitous, evolutionarily conserved, signaling systems. Emerging data suggest that radiation acts directly on the plasma membrane of several cell types, activating acid sphingomyelinase, which generates ceramide by enzymatic hydrolysis of sphingomyelin. Ceramide then acts as a second messenger in initiating an apoptotic response via the mitochondrial system. Radiation-induced DNA damage can also initiate ceramide generation by activation of mitochondrial ceramide synthase and de novo synthesis of ceramide. In some cells and tissues, BAX is activated downstream of ceramide, regulating commitment to the apoptotic process via release of mitochondrial cytochrome c. Genetic and pharmacologic studies in vivo showed that radiation targets the acid sphingomyelinase apoptotic system of microvascular endothelial cells in the lungs, intestines and brain, as well as in oocytes, to initiate the pathogenesis of tissue damage. Regulated ceramide metabolism may produce metabolites, such as sphingosine 1-phosphate, shown to signal antiapoptosis, thus controlling the intensity of the apoptotic response and constituting a mechanism for radiation sensitivity or resistance. An improved understanding of this signaling system may offer new opportunities for the modulation of radiation effects in the treatment of cancer.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                08 January 2020
                2019
                : 9
                : 1468
                Affiliations
                [1] 1Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona , Phoenix, AZ, United States
                [2] 2School of Pharmaceutical Sciences, University of Geneva , Geneva, Switzerland
                [3] 3Southwest Center for Natural Products Research, School of Natural Resources & the Environment, College of Agriculture & Life Sciences, University of Arizona , Tucson, AZ, United States
                Author notes

                Edited by: Gaspar Kitange, Mayo Clinic, United States

                Reviewed by: Xi Yang, Fudan University, China; Jinping Liu, University of Pennsylvania, United States

                *Correspondence: Jerome Lacombe jlacombe@ 123456email.arizona.edu

                This article was submitted to Radiation Oncology, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2019.01468
                6960174
                dc45f160-f8c5-41c7-ac87-28b43c32e833
                Copyright © 2020 Lacombe, Cretignier, Meli, Wijeratne, Veuthey, Cuendet, Gunatilaka and Zenhausern.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 September 2019
                : 09 December 2019
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 46, Pages: 9, Words: 6118
                Categories
                Oncology
                Original Research

                Oncology & Radiotherapy
                withanolide d,cancer,radiation,radiosensitizer,dna damage repair,mitotic catastrophe

                Comments

                Comment on this article