80
views
0
recommends
+1 Recommend
0 collections
    12
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ontogeny in the tube-crested dinosaur Parasaurolophus (Hadrosauridae) and heterochrony in hadrosaurids

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The tube-crested hadrosaurid dinosaur Parasaurolophus is remarkable for its unusual cranial ornamentation, but little is known about its growth and development, particularly relative to well-documented ontogenetic series for lambeosaurin hadrosaurids (such as Corythosaurus, Lambeosaurus, and Hypacrosaurus). The skull and skeleton of a juvenile Parasaurolophus from the late Campanian-aged (∼75.5 Ma) Kaiparowits Formation of southern Utah, USA, represents the smallest and most complete specimen yet described for this taxon. The individual was approximately 2.5 m in body length (∼25% maximum adult body length) at death, with a skull measuring 246 mm long and a femur 329 mm long. A histological section of the tibia shows well-vascularized, woven and parallel-fibered primary cortical bone typical of juvenile ornithopods. The histological section revealed no lines of arrested growth or annuli, suggesting the animal may have still been in its first year at the time of death. Impressions of the upper rhamphotheca are preserved in association with the skull, showing that the soft tissue component for the beak extended for some distance beyond the limits of the oral margin of the premaxilla. In marked contrast with the lengthy tube-like crest in adult Parasaurolophus, the crest of the juvenile specimen is low and hemicircular in profile, with an open premaxilla-nasal fontanelle. Unlike juvenile lambeosaurins, the nasal passages occupy nearly the entirety of the crest in juvenile Parasaurolophus. Furthermore, Parasaurolophus initiated development of the crest at less than 25% maximum skull size, contrasting with 50% of maximum skull size in hadrosaurs such as Corythosaurus. This early development may correspond with the larger and more derived form of the crest in Parasaurolophus, as well as the close relationship between the crest and the respiratory system. In general, ornithischian dinosaurs formed bony cranial ornamentation at a relatively younger age and smaller size than seen in extant birds. This may reflect, at least in part, that ornithischians probably reached sexual maturity prior to somatic maturity, whereas birds become reproductively mature after reaching adult size.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          Size and shape in ontogeny and phylogeny

          We present a quantitative method for describing how heterochronic changes in ontogeny relate to phyletic trends. This is a step towards creating a unified view of developmental biology and evolutionary ecology in the study of morphological evolution. Using this representation, we obtain a greatly simplified and logical scheme of classification. We believe that this scheme will be particularly useful in studying the data of paleontology and comparative morphology and in the analysis of processes leading to adaptive radiation. We illustrate this scheme by examples drawn from the literature and our own work.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Synopsis of the Extinct Batrachia, Reptilia and Aves of North America

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heterochrony and allometry: the analysis of evolutionary change in ontogeny.

              The connection between development and evolution has become the focus of an increasing amount of research in recent years, and heterochrony has long been a key concept in this relation. Heterochrony is defined as evolutionary change in rates and timing of developmental processes; the dimension of time is therefore an essential part in studies of heterochrony. Over the past two decades, evolutionary biologists have used several methodological frameworks to analyse heterochrony, which differ substantially in the way they characterize evolutionary changes in ontogenies and in the resulting classification, although they mostly use the same terms. This review examines how these methods compare ancestral and descendant ontogenies, emphasizing their differences and the potential for contradictory results from analyses using different frameworks. One of the two principal methods uses a clock as a graphical display for comparisons of size, shape and age at a particular ontogenic stage, whereas the other characterizes a developmental process by its time of onset, rate, and time of cessation. The literature on human heterochrony provides particularly clear examples of how these differences produce apparent contradictions when applied to the same problem. Developmental biologists recently have extended the concept of heterochrony to the earliest stages of development and have applied it at the cellular and molecular scale. This extension brought considerations of developmental mechanisms and genetics into the study of heterochrony, which previously was based primarily on phenomenological characterizations of morphological change in ontogeny. Allometry is the pattern of covariation among several morphological traits or between measures of size and shape; unlike heterochrony, allometry does not deal with time explicitly. Two main approaches to the study of allometry are distinguished, which differ in the way they characterize organismal form. One approach defines shape as proportions among measurements, based on considerations of geometric similarity, whereas the other focuses on the covariation among measurements in ontogeny and evolution. Both are related conceptually and through the use of similar algebra. In addition, there are close connections between heterochrony and changes in allometric growth trajectories, although there is no one-to-one correspondence. These relationships and outline links between different analytical frameworks are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                22 October 2013
                2013
                : 1
                : e182
                Affiliations
                [1 ]Raymond M. Alf Museum of Paleontology , Claremont, CA, USA
                [2 ]The Webb Schools , Claremont, CA, USA
                [3 ]Department of Integrative Biology, Museum of Paleontology, and Museum of Vertebrate Zoology, University of California , Berkeley, CA, USA
                Article
                182
                10.7717/peerj.182
                3807589
                24167777
                dc5106d9-6930-4708-81ee-75275a2b22c5
                © 2013 Farke et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 April 2013
                : 29 September 2013
                Funding
                Funded by: Gretchen Augustyn and family, Larry and Alicia Ashton, Tom and Susanna Terris, the David B. Jones Foundation, the Mary Stuart Rogers Foundation, and the Les and Barbara Perry Fund
                This research was funded by Gretchen Augustyn and family, Larry and Alicia Ashton, Tom and Susanna Terris, the David B. Jones Foundation, the Mary Stuart Rogers Foundation, and the Les and Barbara Perry Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Evolutionary Studies
                Paleontology
                Zoology

                parasaurolophus,ontogeny,hadrosauridae,kaiparowits formation,cretaceous,dinosauria,lambeosaurinae,ornithischia,heterochrony

                Comments

                Comment on this article