21
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inflammation Profiling of Critically Ill Coronavirus Disease 2019 Patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Supplemental Digital Content is available in the text.

          Abstract

          Objectives:

          Coronavirus disease 2019 is caused by severe acute respiratory syndrome-coronavirus-2 infection to which there is no community immunity. Patients admitted to ICUs have high mortality, with only supportive therapies available. Our aim was to profile plasma inflammatory analytes to help understand the host response to coronavirus disease 2019.

          Design:

          Daily blood inflammation profiling with immunoassays.

          Setting:

          Tertiary care ICU and academic laboratory.

          Subjects:

          All patients admitted to the ICU suspected of being infected with severe acute respiratory syndrome-coronavirus-2, using standardized hospital screening methodologies, had daily blood samples collected until either testing was confirmed negative on ICU day 3 (coronavirus disease 2019 negative), or until ICU day 7 if the patient was positive (coronavirus disease 2019 positive).

          Interventions:

          None.

          Measurements and Main Results:

          Age- and sex-matched healthy controls and ICU patients that were either coronavirus disease 2019 positive or coronavirus disease 2019 negative were enrolled. Cohorts were well-balanced with the exception that coronavirus disease 2019 positive patients were more likely than coronavirus disease 2019 negative patients to suffer bilateral pneumonia. Mortality rate for coronavirus disease 2019 positive ICU patients was 40%. We measured 57 inflammatory analytes and then analyzed with both conventional statistics and machine learning. Twenty inflammatory analytes were different between coronavirus disease 2019 positive patients and healthy controls ( p < 0.01). Compared with coronavirus disease 2019 negative patients, coronavirus disease 2019 positive patients had 17 elevated inflammatory analytes on one or more of their ICU days 1–3 ( p < 0.01), with feature classification identifying the top six analytes between cohorts as tumor necrosis factor, granzyme B, heat shock protein 70, interleukin-18, interferon-gamma-inducible protein 10, and elastase 2. While tumor necrosis factor, granzyme B, heat shock protein 70, and interleukin-18 were elevated for all seven ICU days, interferon-gamma-inducible protein 10 transiently elevated on ICU days 2 and 3 and elastase 2 increased over ICU days 2–7. Inflammation profiling predicted coronavirus disease 2019 status with 98% accuracy, whereas elevated heat shock protein 70 was strongly associated with mortality.

          Conclusions:

          While many inflammatory analytes were elevated in coronavirus disease 2019 positive ICU patients, relative to healthy controls, the top six analytes distinguishing coronavirus disease 2019 positive ICU patients from coronavirus disease 2019 negative ICU patients were tumor necrosis factor, granzyme B, heat shock protein 70, interleukin-18, interferon-gamma-inducible protein 10, and elastase 2.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

            Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

              Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
                Bookmark

                Author and article information

                Journal
                Crit Care Explor
                Crit Care Explor
                CC9
                Critical Care Explorations
                Wolters Kluwer Health
                2639-8028
                June 2020
                22 June 2020
                : 2
                : 6
                : e0144
                Affiliations
                [1 ]Lawson Health Research Institute, London, ON, Canada.
                [2 ]Departments of Pediatrics, Clinical Neurological Sciences and Physiology and Pharmacology, Western University, London, ON, Canada.
                [3 ]Department of Medical Biophysics, Western University, London, ON, Canada.
                [4 ]Department of Medicine, Western University, London, ON, Canada.
                [5 ]Department of Computer Science, Western University, London, ON, Canada.
                [6 ]The Vector Institute for Artificial Intelligence, Toronto, ON, Canada.
                [7 ]Department of Surgery, Western University, London, ON, Canada.
                [8 ]Department of Physiology and Pharmacology, Western University, London, ON, Canada.
                [9 ]Keenan Research Center for Biomedical Research, Unity Health Toronto, Toronto, ON, Canada.
                [10 ]Interdepartmental Division of Critical Care and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
                Author notes
                For information regarding this article, E-mail: douglas.fraser@ 123456lhsc.on.ca
                Article
                00027
                10.1097/CCE.0000000000000144
                7314329
                32696007
                dc588a45-273f-4672-8ebe-e2f4202e3840
                Copyright © 2020 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of the Society of Critical Care Medicine.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                Categories
                Original Clinical Report
                Custom metadata
                TRUE
                T

                coronavirus disease 2019,intensive care unit,host response,inflammation,biomarkers

                Comments

                Comment on this article