Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

High-density magnetoresistive random access memory operating at ultralow voltage at room temperature

1 , 2 , 1 , a , 2 , b , 1

Nature Communications

Nature Pub. Group

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch−2, ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns.

      Abstract

      Magnetoresistive random access memory offers significant promise as a next-generation memory technology. Nan and colleagues present a design concept for a device that simultaneously possesses ultrahigh storage capacity, ultralow power dissipation, and high-speed operation at room temperature.

      Related collections

      Most cited references 13

      • Record: found
      • Abstract: found
      • Article: not found

      Spintronics: a spin-based electronics vision for the future.

      This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction.

        Magnetic tunnel junctions (MTJs) with ferromagnetic electrodes possessing a perpendicular magnetic easy axis are of great interest as they have a potential for realizing next-generation high-density non-volatile memory and logic chips with high thermal stability and low critical current for current-induced magnetization switching. To attain perpendicular anisotropy, a number of material systems have been explored as electrodes, which include rare-earth/transition-metal alloys, L1(0)-ordered (Co, Fe)-Pt alloys and Co/(Pd, Pt) multilayers. However, none of them so far satisfy high thermal stability at reduced dimension, low-current current-induced magnetization switching and high tunnel magnetoresistance ratio all at the same time. Here, we use interfacial perpendicular anisotropy between the ferromagnetic electrodes and the tunnel barrier of the MTJ by employing the material combination of CoFeB-MgO, a system widely adopted to produce a giant tunnel magnetoresistance ratio in MTJs with in-plane anisotropy. This approach requires no material other than those used in conventional in-plane-anisotropy MTJs. The perpendicular MTJs consisting of Ta/CoFeB/MgO/CoFeB/Ta show a high tunnel magnetoresistance ratio, over 120%, high thermal stability at dimension as low as 40 nm diameter and a low switching current of 49 microA.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          The emergence of spin electronics in data storage.

          Electrons have a charge and a spin, but until recently these were considered separately. In classical electronics, charges are moved by electric fields to transmit information and are stored in a capacitor to save it. In magnetic recording, magnetic fields have been used to read or write the information stored on the magnetization, which 'measures' the local orientation of spins in ferromagnets. The picture started to change in 1988, when the discovery of giant magnetoresistance opened the way to efficient control of charge transport through magnetization. The recent expansion of hard-disk recording owes much to this development. We are starting to see a new paradigm where magnetization dynamics and charge currents act on each other in nanostructured artificial materials. Ultimately, 'spin currents' could even replace charge currents for the transfer and treatment of information, allowing faster, low-energy operations: spin electronics is on its way.
            Bookmark

            Author and article information

            Affiliations
            [1 ]Department of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Tsinghua University , Beijing 100084, China.
            [2 ]Department of Materials Science and Engineering, The Pennsylvania State University , University Park, Pennsylvania 16802, USA.
            Author notes
            Journal
            Nat Commun
            Nat Commun
            Nature Communications
            Nature Pub. Group
            2041-1723
            22 November 2011
            : 2
            : 553
            22109527
            3482632
            ncomms1564
            10.1038/ncomms1564
            Copyright © 2011, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

            This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

            Categories
            Article

            Uncategorized

            Comments

            Comment on this article