26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A learning–based approach to artificial sensory feedback leads to optimal integration

      research-article
      1 , 2 , 1 , 1 , 2
      Nature neuroscience

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Proprioception—the sense of the body’s position in space—plays an important role in natural movement planning and execution and will likewise be necessary for successful motor prostheses and Brain–Machine Interfaces (BMIs). Here, we demonstrated that monkeys could learn to use an initially unfamiliar multi–channel intracortical microstimulation (ICMS) signal, which provided continuous information about hand position relative to an unseen target, to complete accurate reaches. Furthermore, monkeys combined this artificial signal with vision to form an optimal, minimum–variance estimate of relative hand position. These results demonstrate that a learning–based approach can be used to provide a rich artificial sensory feedback signal, suggesting a new strategy for restoring proprioception to patients using BMIs as well as a powerful new tool for studying the adaptive mechanisms of sensory integration.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Book: not found

          An Introduction to the Bootstrap

          Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Humans integrate visual and haptic information in a statistically optimal fashion.

            When a person looks at an object while exploring it with their hand, vision and touch both provide information for estimating the properties of the object. Vision frequently dominates the integrated visual-haptic percept, for example when judging size, shape or position, but in some circumstances the percept is clearly affected by haptics. Here we propose that a general principle, which minimizes variance in the final estimate, determines the degree to which vision or haptics dominates. This principle is realized by using maximum-likelihood estimation to combine the inputs. To investigate cue combination quantitatively, we first measured the variances associated with visual and haptic estimation of height. We then used these measurements to construct a maximum-likelihood integrator. This model behaved very similarly to humans in a visual-haptic task. Thus, the nervous system seems to combine visual and haptic information in a fashion that is similar to a maximum-likelihood integrator. Visual dominance occurs when the variance associated with visual estimation is lower than that associated with haptic estimation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intentional maps in posterior parietal cortex.

              The posterior parietal cortex (PPC), historically believed to be a sensory structure, is now viewed as an area important for sensory-motor integration. Among its functions is the forming of intentions, that is, high-level cognitive plans for movement. There is a map of intentions within the PPC, with different subregions dedicated to the planning of eye movements, reaching movements, and grasping movements. These areas appear to be specialized for the multisensory integration and coordinate transformations required to convert sensory input to motor output. In several subregions of the PPC, these operations are facilitated by the use of a common distributed space representation that is independent of both sensory input and motor output. Attention and learning effects are also evident in the PPC. However, these effects may be general to cortex and operate in the PPC in the context of sensory-motor transformations.
                Bookmark

                Author and article information

                Journal
                9809671
                21092
                Nat Neurosci
                Nat. Neurosci.
                Nature neuroscience
                1097-6256
                1546-1726
                1 December 2014
                24 November 2014
                January 2015
                01 July 2015
                : 18
                : 1
                : 138-144
                Affiliations
                [1 ]Department of Physiology, Center for Integrative Neuroscience, and UC Berkeley–UCSF Center for Neural Engineering and Prosthetics
                [2 ]UC Berkeley–UCSF Joint Graduate Program in Bioengineering University of California, San Francisco
                Article
                NIHMS639101
                10.1038/nn.3883
                4282864
                25420067
                dc7479fe-560e-4c65-86d6-78c32267a95c
                History
                Categories
                Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article