11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High-density lipoprotein exerts vasculoprotection via endothelial progenitor cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endothelial progenitor cells (EPC) enhance endothelial cell repair, improve endothelial dysfunction and are a predictor for cardiovascular mortality. High-density lipoprotein (HDL) cholesterol levels inversely correlate with cardiovascular events and have vasculoprotective effects. Here we postulate that HDL influences EPC biology. HDL and EPC were isolated according to standard procedures. Differentiation of mononuclear cells into DiLDL/lectin positive cells was enhanced after HDL treatment compared to vehicle. HDL was able to inhibit apoptosis (TUNEL assay, annexin V staining) while proliferation (BrdU incorporation) of early outgrowth colonies after extended cell cultivation (14 days) was increased. Flow chamber experiments revealed an improved adhesion of HDL pre-incubated EPC on human coronary artery endothelial cells (HCAEC) compared to vehicle while HDL treatment of HCAEC prevented adhesion of inflammatory cells. Flow cytometry demonstrated an up-regulation of β 2- and α 4-integrins on HDL pre-incubated EPC. Blocking experiments revealed a unique role of β 2-integrin in EPC adhesion. Treatment of wild-type mice with recombinant HDL after endothelial denudation resulted in enhanced re-endothelialization compared to vehicle. Finally, in patients with coronary artery disease a correlation between circulating EPC and HDL concentrations was demonstrated. We provide evidence that HDL mediates important vasculoprotective action via the improvement of function of circulating EPC.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease.

          Recent studies provide increasing evidence that postnatal neovascularization involves bone marrow-derived circulating endothelial progenitor cells (EPCs). The regulation of EPCs in patients with coronary artery disease (CAD) is unclear at present. Therefore, we determined the number and functional activity of EPCs in 45 patients with CAD and 15 healthy volunteers. The numbers of isolated EPCs and circulating CD34/kinase insert domain receptor (KDR)-positive precursor cells were significantly reduced in patients with CAD by approximately 40% and 48%, respectively. To determine the influence of atherosclerotic risk factors, a risk factor score including age, sex, hypertension, diabetes, smoking, positive family history of CAD, and LDL cholesterol levels was used. The number of risk factors was significantly correlated with a reduction of EPC levels (R=-0.394, P=0.002) and CD34-/KDR-positive cells (R=-0.537, P<0.001). Analysis of the individual risk factors demonstrated that smokers had significantly reduced levels of EPCs (P<0.001) and CD34-/KDR-positive cells (P=0.003). Moreover, a positive family history of CAD was associated with reduced CD34-/KDR-positive cells (P=0.011). Most importantly, EPCs isolated from patients with CAD also revealed an impaired migratory response, which was inversely correlated with the number of risk factors (R=-0.484, P=0.002). By multivariate analysis, hypertension was identified as a major independent predictor for impaired EPC migration (P=0.043). The present study demonstrates that patients with CAD revealed reduced levels and functional impairment of EPCs, which correlated with risk factors for CAD. Given the important role of EPCs for neovascularization of ischemic tissue, the decrease of EPC numbers and activity may contribute to impaired vascularization in patients with CAD. The full text of this article is available at http://www.circresaha.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis.

            Endothelial progenitor cells (EPC) in one study group is not the same as EPC in other investigators, suggesting that EPC is not a single type of cell population. In this study, we tried to demonstrate the heterogeneity of EPC. We cultured total mononuclear cells from human peripheral blood to get two types of EPC sequentially from the same donors. We called them early EPC and late EPC. Early EPC with spindle shape showed peak growth at 2 to 3 weeks and died at 4 weeks, whereas late EPC with cobblestone shape appeared late at 2 to 3 weeks, showed exponential growth at 4 to 8 weeks, and lived up to 12 weeks. Late EPC was different from early EPC in the expression of VE-cadherin, Flt-1, KDR, and CD45. Late EPC produced more nitric oxide, incorporated more readily into human umbilical vein endothelial cells monolayer, and formed capillary tube better than early EPC. Early EPC secreted angiogenic cytokines (vascular endothelial growth factor, interleukin 8) more so than late EPC during culture in vitro. Both types of EPC showed comparable in vivo vasculogenic capacity. We found two types of EPC from a source of adult peripheral blood that might have different roles in neovasculogenesis based on the identified differences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair.

              The maintenance of endothelial integrity plays a critical role in preventing atherosclerotic disease progression. Endothelial progenitor cells (EPCs) were experimentally shown to incorporate into sites of neovascularization and home to sites of endothelial denudation. Circulating EPCs may thus provide an endogenous repair mechanism to counteract ongoing risk factor-induced endothelial injury and to replace dysfunctional endothelium. In 120 individuals (43 control subjects, 44 patients with stable coronary artery disease, and 33 patients with acute coronary syndromes), circulating EPCs were defined by the surface markers CD34+KDR+ and analyzed by flow cytometry. Cardiovascular events (cardiovascular death, unstable angina, myocardial infarction, PTCA, CABG, or ischemic stroke) served as outcome variables over a median follow-up period of 10 months. Patients suffering from cardiovascular events had significantly lower numbers of EPCs (P<0.05). Reduced numbers of EPCs were associated with a significantly higher incidence of cardiovascular events by Kaplan-Meier analysis (P=0.0009). By multivariate analysis, reduced EPC levels were a significant, independent predictor of poor prognosis, even after adjustment for traditional cardiovascular risk factors and disease activity (hazard ratio, 3.9; P<0.05). Reduced levels of circulating EPCs independently predict atherosclerotic disease progression, thus supporting an important role for endogenous vascular repair to modulate the clinical course of coronary artery disease.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                John Wiley & Sons, Ltd (Chichester, UK )
                1582-1838
                1582-4934
                Nov-Dec 2009
                14 August 2008
                : 13
                : 11-12
                : 4623-4635
                Affiliations
                Department of Internal Medicine II, University Hospital Bonn Bonn, Germany
                Author notes
                * Correspondence to: Nikos WERNER, Department of Internal Medicine II, University Hospital Bonn, 53105 Bonn, Germany. Tel.: +49-228-287-19883 Fax: +49-228-287-11271 E-mail: nwerner@ 123456uni-bonn.de
                Article
                10.1111/j.1582-4934.2008.00472.x
                4515076
                18705697
                dc81ff06-1973-44f9-8fad-d62014560012
                © 2008 The Authors Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
                History
                : 10 March 2008
                : 07 August 2008
                Categories
                Articles

                Molecular medicine
                high-density lipoprotein,endothelium,endothelial progenitor cells
                Molecular medicine
                high-density lipoprotein, endothelium, endothelial progenitor cells

                Comments

                Comment on this article