41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evolution of Mutational Robustness in an RNA Virus

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mutational (genetic) robustness is phenotypic constancy in the face of mutational changes to the genome. Robustness is critical to the understanding of evolution because phenotypically expressed genetic variation is the fuel of natural selection. Nonetheless, the evidence for adaptive evolution of mutational robustness in biological populations is controversial. Robustness should be selectively favored when mutation rates are high, a common feature of RNA viruses. However, selection for robustness may be relaxed under virus co-infection because complementation between virus genotypes can buffer mutational effects. We therefore hypothesized that selection for genetic robustness in viruses will be weakened with increasing frequency of co-infection. To test this idea, we used populations of RNA phage φ6 that were experimentally evolved at low and high levels of co-infection and subjected lineages of these viruses to mutation accumulation through population bottlenecking. The data demonstrate that viruses evolved under high co-infection show relatively greater mean magnitude and variance in the fitness changes generated by addition of random mutations, confirming our hypothesis that they experience weakened selection for robustness. Our study further suggests that co-infection of host cells may be advantageous to RNA viruses only in the short term. In addition, we observed higher mutation frequencies in the more robust viruses, indicating that evolution of robustness might foster less-accurate genome replication in RNA viruses.

          Abstract

          RNA phage viruses evolved under high co-infection of host cells are less robust to mutations than those propagated under low co-infection, suggesting that co-infection may be advantageous to RNA viruses only in the short term.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Perspective: Evolution and detection of genetic robustness.

          Robustness is the invariance of phenotypes in the face of perturbation. The robustness of phenotypes appears at various levels of biological organization, including gene expression, protein folding, metabolic flux, physiological homeostasis, development, and even organismal fitness. The mechanisms underlying robustness are diverse, ranging from thermodynamic stability at the RNA and protein level to behavior at the organismal level. Phenotypes can be robust either against heritable perturbations (e.g., mutations) or nonheritable perturbations (e.g., the weather). Here we primarily focus on the first kind of robustness--genetic robustness--and survey three growing avenues of research: (1) measuring genetic robustness in nature and in the laboratory; (2) understanding the evolution of genetic robustness: and (3) exploring the implications of genetic robustness for future evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolution of digital organisms at high mutation rates leads to survival of the flattest.

            Darwinian evolution favours genotypes with high replication rates, a process called 'survival of the fittest'. However, knowing the replication rate of each individual genotype may not suffice to predict the eventual survivor, even in an asexual population. According to quasi-species theory, selection favours the cloud of genotypes, interconnected by mutation, whose average replication rate is highest. Here we confirm this prediction using digital organisms that self-replicate, mutate and evolve. Forty pairs of populations were derived from 40 different ancestors in identical selective environments, except that one of each pair experienced a 4-fold higher mutation rate. In 12 cases, the dominant genotype that evolved at the lower mutation rate achieved a replication rate >1.5-fold faster than its counterpart. We allowed each of these disparate pairs to compete across a range of mutation rates. In each case, as mutation rate was increased, the outcome of competition switched to favour the genotype with the lower replication rate. These genotypes, although they occupied lower fitness peaks, were located in flatter regions of the fitness surface and were therefore more robust with respect to mutations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prisoner's dilemma in an RNA virus.

              The evolution of competitive interactions among viruses was studied in the RNA phage phi6 at high and low multiplicities of infection (that is, at high and low ratios of infecting phage to host cells). At high multiplicities, many phage infect and reproduce in the same host cell, whereas at low multiplicities the viruses reproduce mainly as clones. An unexpected result of this study was that phage grown at high rates of co-infection increased in fitness initially, but then evolved lowered fitness. Here we show that the fitness of the high-multiplicity phage relative to their ancestors generates a pay-off matrix conforming to the prisoner's dilemma strategy of game theory. In this strategy, defection (selfishness) evolves, despite the greater fitness pay-off that would result if all players were to cooperate. Viral cooperation and defection can be defined as, respectively, the manufacturing and sequestering of diffusible (shared) intracellular products. Because the low-multiplicity phage did not evolve lowered fitness, we attribute the evolution of selfishness to the lack of clonal structure and the mixing of unrelated genotypes at high multiplicity.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                November 2005
                1 November 2005
                : 3
                : 11
                : e381
                Affiliations
                [1] 1 Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America,
                [2] 2 INSERM, Equipe, Ecologie et Evolution de Micro-Organismes, Henri Huchard, Paris, France
                Massey University New Zealand
                Article
                10.1371/journal.pbio.0030381
                1275523
                16248678
                dc84d57f-6d49-4ea2-a186-51f68cd6f73d
                Copyright: © 2005 Montville et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 June 2005
                : 8 September 2005
                Categories
                Research Article
                Evolution
                Microbiology
                Virology
                Viruses

                Life sciences
                Life sciences

                Comments

                Comment on this article