4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      An electromechanical interpretation of electrowetting

      Journal of Micromechanics and Microengineering
      IOP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Video-speed electronic paper based on electrowetting.

          In recent years, a number of different technologies have been proposed for use in reflective displays. One of the most appealing applications of a reflective display is electronic paper, which combines the desirable viewing characteristics of conventional printed paper with the ability to manipulate the displayed information electronically. Electronic paper based on the electrophoretic motion of particles inside small capsules has been demonstrated and commercialized; but the response speed of such a system is rather slow, limited by the velocity of the particles. Recently, we have demonstrated that electrowetting is an attractive technology for the rapid manipulation of liquids on a micrometre scale. Here we show that electrowetting can also be used to form the basis of a reflective display that is significantly faster than electrophoretic displays, so that video content can be displayed. Our display principle utilizes the voltage-controlled movement of a coloured oil film adjacent to a white substrate. The reflectivity and contrast of our system approach those of paper. In addition, we demonstrate a colour concept, which is intrinsically four times brighter than reflective liquid-crystal displays and twice as bright as other emerging technologies. The principle of microfluidic motion at low voltages is applicable in a wide range of electro-optic devices.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Variable-focus liquid lens for miniature cameras

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids.

              Clinical diagnostics is one of the most promising applications for microfluidic lab-on-a-chip systems, especially in a point-of-care setting. Conventional microfluidic devices are usually based on continuous-flow in microchannels, and offer little flexibility in terms of reconfigurability and scalability. Handling of real physiological samples has also been a major challenge in these devices. We present an alternative paradigm--a fully integrated and reconfigurable droplet-based "digital" microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. The microdroplets, which act as solution-phase reaction chambers, are manipulated using the electrowetting effect. Reliable and repeatable high-speed transport of microdroplets of human whole blood, serum, plasma, urine, saliva, sweat and tear, is demonstrated to establish the basic compatibility of these physiological fluids with the electrowetting platform. We further performed a colorimetric enzymatic glucose assay on serum, plasma, urine, and saliva, to show the feasibility of performing bioassays on real samples in our system. The concentrations obtained compare well with those obtained using a reference method, except for urine, where there is a significant difference due to interference by uric acid. A lab-on-a-chip architecture, integrating previously developed digital microfluidic components, is proposed for integrated and automated analysis of multiple analytes on a monolithic device. The lab-on-a-chip integrates sample injection, on-chip reservoirs, droplet formation structures, fluidic pathways, mixing areas and optical detection sites, on the same substrate. The pipelined operation of two glucose assays is shown on a prototype digital microfluidic lab-on-chip, as a proof-of-concept.
                Bookmark

                Author and article information

                Journal
                Journal of Micromechanics and Microengineering
                J. Micromech. Microeng.
                IOP Publishing
                0960-1317
                1361-6439
                June 01 2005
                June 01 2005
                : 15
                : 6
                : 1184-1187
                Article
                10.1088/0960-1317/15/6/008
                dc85bd2d-a551-4416-9ab6-1e22b9aa7b1a
                © 2005
                History

                Comments

                Comment on this article