5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Long-term expression of erythropoietin in the systemic circulation of mice after intramuscular injection of a plasmid DNA vector.

      Proceedings of the National Academy of Sciences of the United States of America
      Animals, Dose-Response Relationship, Drug, Erythropoiesis, Erythropoietin, administration & dosage, genetics, pharmacokinetics, Gene Transfer Techniques, Genetic Vectors, Hematocrit, Injections, Intramuscular, Metabolic Clearance Rate, Mice, Mice, Inbred BALB C, Mice, SCID, Muscle, Skeletal, metabolism, Plasmids, Time Factors

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Erythropoietin (Epo)-responsive anemia is a common and debilitating complication of chronic renal failure and human immunodeficiency virus infection. Current therapy for this condition involves repeated intravenous or subcutaneous injections of recombinant Epo. In this report, we describe the development of a novel muscle-based gene transfer approach that produces long-term expression of physiologically significant levels of Epo in the systemic circulation of mice. We have constructed a plasmid expression vector, pVRmEpo, that contains the murine Epo cDNA under the transcriptional control of the cytomegalovirus immediate early (CMV-IE) promoter, the CMV-IE 5' untranslated region, and intron A. A single intramuscular (i.m.) injection of as little as 10 micrograms of this plasmid into immunocompetent adult mice produced physiologically significant elevations in serum Epo levels and increased hematocrits from preinjection levels of 48 +/- 0.4% to levels of 64 +/- 3.3% 45 days after injection. Hematocrits in these animals remained elevated at greater than 60% for at least 90 days after a single i.m. injection of 10 micrograms of pVRmEpo. We observed a dose-response relationship between the amount of plasmid DNA injected and subsequent elevations in hematocrits. Mice injected once with 300 micrograms of pVRmEpo displayed 5-fold increased serum Epo levels and elevated hematocrits of 79 +/- 3.3% at 45 days after injection. The i.m. injected plasmid DNA remained localized to the site of injection as assayed by the PCR. We conclude that i.m. injection of plasmid DNA represents a viable nonviral gene transfer method for the treatment of acquired and inherited serum protein deficiencies.

          Related collections

          Author and article information

          Comments

          Comment on this article