17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of the T and B lymphocytes in pathogenesis of autoimmune thyroid diseases

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autoimmune thyroid disorders (AITD) broadly include Graves’ disease and Hashimoto’s thyroiditis which are the most common causes of thyroid gland dysfunctions. These disorders develop due to complex interactions between environmental and genetic factors and are characterized by reactivity to self-thyroid antigens due to autoreactive lymphocytes escaping tolerance. Both cell-mediated and humoral responses lead to tissue injury in autoimmune thyroid disease. The differentiation of CD4+ cells in the specific setting of immune mediators (for example cytokines, chemokines) results in differentiation of various T cell subsets. T cell identification has shown a mixed pattern of cytokine production indicating that both subtypes of T helper, Th1 and Th2, responses are involved in all types of AITD. Furthermore, recent studies described T cell subtypes Th17 and Treg which also play an essential role in pathogenesis of AITD. This review will focus on the role of the T regulatory (Treg) and T helper (Th) (especially Th17) lymphocytes, and also of B lymphocytes in AITD pathogenesis. However, we have much more to learn about cellular mechanisms and interactions in AITD before we can develop complete understanding of AITD pathophysiology.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: found
          • Article: not found

          A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17.

          Interleukin 17 (IL-17) has been linked to autoimmune diseases, although its regulation and function have remained unclear. Here we have evaluated in vitro and in vivo the requirements for the differentiation of naive CD4 T cells into effector T helper cells that produce IL-17. This process required the costimulatory molecules CD28 and ICOS but was independent of the cytokines and transcription factors required for T helper type 1 or type 2 differentiation. Furthermore, both IL-4 and interferon-gamma negatively regulated T helper cell production of IL-17 in the effector phase. In vivo, antibody to IL-17 inhibited chemokine expression in the brain during experimental autoimmune encephalomyelitis, whereas overexpression of IL-17 in lung epithelium caused chemokine production and leukocyte infiltration. Thus, IL-17 expression characterizes a unique T helper lineage that regulates tissue inflammation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development, cytokine profile and function of human interleukin 17-producing helper T cells.

            T(H)-17 cells are a distinct lineage of proinflammatory T helper cells that are essential for autoimmune disease. In mice, commitment to the T(H)-17 lineage is dependent on transforming growth factor-beta and interleukin 6 (IL-6). Here we demonstrate that IL-23 and IL-1beta induced the development of human T(H)-17 cells expressing IL-17A, IL-17F, IL-22, IL-26, interferon-gamma, the chemokine CCL20 and transcription factor RORgammat. In situ, T(H)-17 cells were identified by expression of the IL-23 receptor and the memory T cell marker CD45RO. Psoriatic skin lesions contained IL-23-producing dendritic cells and were enriched in the cytokines produced by human T(H)-17 cells that promote the production of antimicrobial peptides in human keratinocytes. Our data collectively indicate that human and mouse T(H)-17 cells require distinct factors during differentiation and that human T(H)-17 cells may regulate innate immunity in epithelial cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Generation of Pathogenic Th17 Cells in the Absence of TGF-β Signaling

              CD4+ T cells that selectively produce interleukin (IL)-17, are critical for host defense and autoimmunity 1–4 . Crucial for T helper17 (Th17) cells in vivo 5,6 , IL-23 has been thought to be incapable of driving initial differentiation. Rather, IL-6 and transforming growth factor (TGF)-β1 have been argued to be the factors responsible for initiating specification 7–10 . Herein, we show that Th17 differentiation can occur in the absence of TGF-β signaling. Neither IL-6 nor IL-23 alone efficiently generated Th17 cells; however, these cytokines in combination with IL-1β effectively induced IL-17 production in naïve precursors, independently of TGF-β. Epigenetic modification of the Il17a/Il17f and Rorc promoters proceeded without TGF-β1, allowing the generation of cells that co-expressed Rorγt and T-bet. T-bet+ Rorγt+ Th17 cells are generated in vivo during experimental allergic encephalomyelitis (EAE), and adoptively transferred Th17 cells generated with IL-23 without TGF-β1 were pathogenic in this disease model. These data suggest an alternative mode for Th17 differentiation. Consistent with genetic data linking IL23R with autoimmunity, our findings re-emphasize the importance of IL-23 and therefore have may have therapeutic implications.
                Bookmark

                Author and article information

                Contributors
                857450-735 , abossowski@hotmail.com
                Journal
                Thyroid Res
                Thyroid Res
                Thyroid Research
                BioMed Central (London )
                1756-6614
                13 February 2018
                13 February 2018
                2018
                : 11
                : 2
                Affiliations
                ISNI 0000000122482838, GRID grid.48324.39, Department of Pediatrics, Endocrinology and Diabetes with a Cardiology Unit, , Medical University of Bialystok, ; ul. Waszyngtona 17, 15-274 Białystok, Poland
                Article
                46
                10.1186/s13044-018-0046-9
                5812228
                29449887
                dca6464f-d0fb-4a01-a6d3-ba3db1358598
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 13 January 2018
                : 30 January 2018
                Funding
                Funded by: Medical University in Bialystok
                Award ID: 12/2018
                Award Recipient :
                Categories
                Short Report
                Custom metadata
                © The Author(s) 2018

                Endocrinology & Diabetes
                autoimmune thyroid diseases,t helper,t regulatory,graves’ disease,hashimoto’s thyroiditis

                Comments

                Comment on this article