9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Is the spontaneously hypertensive stroke prone rat a pertinent model of sub cortical ischemic stroke? A systematic review.

      International Journal of Stroke
      Animals, Arterioles, pathology, Biological Markers, Blood Proteins, analysis, Blood-Brain Barrier, Brain, Brain Ischemia, etiology, Cerebral Arteries, Cerebral Hemorrhage, Disease Models, Animal, Genetic Predisposition to Disease, Humans, Hypertension, complications, genetics, Infarction, Middle Cerebral Artery, Rats, Rats, Inbred SHR, classification, Rats, Inbred WKY, Research Design, Sodium Chloride, Dietary, toxicity, Species Specificity, Stroke, Stroke, Lacunar, Vasculitis, blood

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The spontaneously hypertensive stroke prone rat is best known as an inducible model of large artery stroke. Spontaneous strokes and stroke propensity in the spontaneously hypertensive stroke prone rat are less well characterized; however, could be relevant to human lacunar stroke. We systematically reviewed the literature to assess the brain tissue and small vessel pathology underlying the spontaneous strokes of the spontaneously hypertensive stroke prone rat. We searched systematically three online databases from 1970 to May 2010; excluded duplicates, reviews, and articles describing the consequences of induced middle cerebral artery occlusion or noncerebral pathology; and recorded data describing brain region and the vessels examined, number of animals, age, dietary salt intake, vascular and tissue abnormalities. Among 102 relevant studies, animals sacrificed after developing stroke-like symptoms displayed arteriolar wall thickening, subcortical lesions, enlarged perivascular spaces and cortical infarcts and hemorrhages. Histopathology, proteomics and imaging studies suggested that the changes not due simply to hypertension. There may be susceptibility to endothelial permeability increase that precedes arteriolar wall thickening, degeneration and perivascular tissue changes; systemic inflammation may also precede cerebrovascular changes. There were very few data on venules or tissue changes before hypertension. The spontaneously hypertensive stroke prone rat shows similar features to human lacunar stroke and may be a good spontaneous model of this complex human disorder. Further studies should focus on structural changes at early ages and genetics to identify factors that predispose to vascular and brain damage. © 2011 The Authors. International Journal of Stroke © 2011 World Stroke Organization.

          Related collections

          Author and article information

          Comments

          Comment on this article