2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 11

          • Record: found
          • Abstract: found
          • Article: not found

          The structural basis for cap binding by influenza virus polymerase subunit PB2.

          Influenza virus mRNAs are synthesized by the trimeric viral polymerase using short capped primers obtained by a 'cap-snatching' mechanism. The polymerase PB2 subunit binds the 5' cap of host pre-mRNAs, which are cleaved after 10-13 nucleotides by the PB1 subunit. Using a library-screening method, we identified an independently folded domain of PB2 that has specific cap binding activity. The X-ray structure of the domain with bound cap analog m(7)GTP at 2.3-A resolution reveals a previously unknown fold and a mode of ligand binding that is similar to, but distinct from, other cap binding proteins. Binding and functional studies with point mutants confirm that the identified site is essential for cap binding in vitro and cap-dependent transcription in vivo by the trimeric polymerase complex. These findings clarify the nature of the cap binding site in PB2 and will allow efficient structure-based design of new anti-influenza compounds inhibiting viral transcription.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit.

            The trimeric influenza virus polymerase, comprising subunits PA, PB1 and PB2, is responsible for transcription and replication of the segmented viral RNA genome. Using a novel library-based screening technique called expression of soluble proteins by random incremental truncation (ESPRIT), we identified an independently folded C-terminal domain from PB2 and determined its solution structure by NMR. Using green fluorescent protein fusions, we show that both the domain and the full-length PB2 subunit are efficiently imported into the nucleus dependent on a previously overlooked bipartite nuclear localization sequence (NLS). The crystal structure of the domain complexed with human importin alpha5 shows how the last 20 residues unfold to permit binding to the import factor. The domain contains three surface residues implicated in adaptation from avian to mammalian hosts. One of these tethers the NLS-containing peptide to the core of the domain in the unbound state.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ELF3 controls thermoresponsive growth in Arabidopsis.

              Plant development is highly responsive to ambient temperature, and this trait has been linked to the ability of plants to adapt to climate change. The mechanisms by which natural populations modulate their thermoresponsiveness are not known. To address this, we surveyed Arabidopsis accessions for variation in thermal responsiveness of elongation growth and mapped the corresponding loci. We find that the transcriptional regulator EARLY FLOWERING3 (ELF3) controls elongation growth in response to temperature. Through a combination of modeling and experiments, we show that high temperature relieves the gating of growth at night, highlighting the importance of temperature-dependent repressors of growth. ELF3 gating of transcriptional targets responds rapidly and reversibly to changes in temperature. We show that the binding of ELF3 to target promoters is temperature dependent, suggesting a mechanism where temperature directly controls ELF3 activity.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                August 26 2020
                Article
                10.1038/s41586-020-2644-7
                © 2020

                Comments

                Comment on this article