82
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetically Encoded Green Fluorescent Ca 2+ Indicators with Improved Detectability for Neuronal Ca 2+ Signals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Imaging the activities of individual neurons with genetically encoded Ca 2+ indicators (GECIs) is a promising method for understanding neuronal network functions. Here, we report GECIs with improved neuronal Ca 2+ signal detectability, termed G-CaMP6 and G-CaMP8. Compared to a series of existing G-CaMPs, G-CaMP6 showed fairly high sensitivity and rapid kinetics, both of which are suitable properties for detecting subtle and fast neuronal activities. G-CaMP8 showed a greater signal ( F max/ F min = 38) than G-CaMP6 and demonstrated kinetics similar to those of G-CaMP6. Both GECIs could detect individual spikes from pyramidal neurons of cultured hippocampal slices or acute cortical slices with 100% detection rates, demonstrating their superior performance to existing GECIs. Because G-CaMP6 showed a higher sensitivity and brighter baseline fluorescence than G-CaMP8 in a cellular environment, we applied G-CaMP6 for Ca 2+ imaging of dendritic spines, the putative postsynaptic sites. By expressing a G-CaMP6-actin fusion protein for the spines in hippocampal CA3 pyramidal neurons and electrically stimulating the granule cells of the dentate gyrus, which innervate CA3 pyramidal neurons, we found that sub-threshold stimulation triggered small Ca 2+ responses in a limited number of spines with a low response rate in active spines, whereas supra-threshold stimulation triggered large fluorescence responses in virtually all of the spines with a 100% activity rate.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences.

          We describe a dominant behavioral marker, rol-6(su-1006), and an efficient microinjection procedure which facilitate the recovery of Caenorhabditis elegans transformants. We use these tools to study the mechanism of C.elegans DNA transformation. By injecting mixtures of genetically marked DNA molecules, we show that large extrachromosomal arrays assemble directly from the injected molecules and that homologous recombination drives array assembly. Appropriately placed double-strand breaks stimulated homologous recombination during array formation. Our data indicate that the size of the assembled transgenic structures determines whether or not they will be maintained extrachromosomally or lost. We show that low copy number extrachromosomal transformation can be achieved by adjusting the relative concentration of DNA molecules in the injection mixture. Integration of the injected DNA, though relatively rare, was reproducibly achieved when single-stranded oligonucleotide was co-injected with the double-stranded DNA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optimization of a GCaMP calcium indicator for neural activity imaging.

            Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by severalfold, creating a family of "GCaMP5" sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2- to 3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein.

              Recently, several groups have developed green fluorescent protein (GFP)-based Ca(2+) probes. When applied in cells, however, these probes are difficult to use because of a low signal-to-noise ratio. Here we report the development of a high-affinity Ca(2+) probe composed of a single GFP (named G-CaMP). G-CaMP showed an apparent K(d) for Ca(2+) of 235 nM. Association kinetics of Ca(2+) binding were faster at higher Ca(2+) concentrations, with time constants decreasing from 230 ms at 0.2 microM Ca(2+) to 2.5 ms at 1 microM Ca(2+). Dissociation kinetics (tau approximately 200 ms) are independent of Ca(2+) concentrations. In HEK-293 cells and mouse myotubes expressing G-CaMP, large fluorescent changes were observed in response to application of drugs or electrical stimulations. G-CaMP will be a useful tool for visualizing intracellular Ca2+ in living cells. Mutational analysis, together with previous structural information, suggests the residues that may alter the fluorescence of GFP.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                11 December 2012
                : 7
                : 12
                : e51286
                Affiliations
                [1 ]Brain Science Institute, Saitama University, Saitama, Japan
                [2 ]Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
                Western University of Health Sciences, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MO YI JN. Performed the experiments: MO TS JS CK KG-A YK-N YI JN. Analyzed the data: MO TS JS CK KG-A YK-N YI JN. Contributed reagents/materials/analysis tools: MO JS. Wrote the paper: MO TS JS CK KG-A YK-N YI JN.

                Article
                PONE-D-12-27822
                10.1371/journal.pone.0051286
                3519846
                23240011
                dcd861a5-4c26-4933-bd42-2011d227c280
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 11 September 2012
                : 31 October 2012
                Page count
                Pages: 10
                Funding
                This work was partly supported by the Regional Innovation Cluster Program (City Area Type, Central Saitama Area) and by grants from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) to M.O. (nos. 22500285 and 24111509), T.S. (no. 10J05408), K.G.-A. (no. 22500353) and J.N. (no. 21500379). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Neurological System
                Neuroanatomy
                Computational Biology
                Computational Neuroscience
                Single Neuron Function
                Molecular Cell Biology
                Cellular Types
                Neurons
                Signal Transduction
                Signaling in Selected Disciplines
                Neurological Signaling
                Neuroscience
                Computational Neuroscience
                Single Neuron Function
                Neuroimaging
                Calcium Imaging
                Molecular Neuroscience
                Medicine
                Neurology
                Neuroimaging

                Uncategorized
                Uncategorized

                Comments

                Comment on this article