9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cytosine N4-Methylation via M.Ssp6803II Is Involved in the Regulation of Transcription, Fine- Tuning of DNA Replication and DNA Repair in the Cyanobacterium Synechocystis sp. PCC 6803

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA methylation plays a crucial role for gene regulation among eukaryotes, but its regulatory function is less documented in bacteria. In the cyanobacterium Synechocystis sp. PCC 6803 five DNA methyltransferases have been identified. Among them, M.Ssp6803II is responsible for the specific methylation of the first cytosine in the frequently occurring motif GGCC, leading to N4-methylcytosine (GG m4CC). The mutation of the corresponding gene sll0729 led to lowered chlorophyll/phycocyanin ratio and slower growth. Transcriptomics only showed altered expression of sll0470 and sll1526, two genes encoding hypothetical proteins. Moreover, prolonged cultivation revealed instability of the initially obtained phenotype. Colonies with normal pigmentation and wild-type-like growth regularly appeared on agar plates. These colonies represent suppressor mutants, because the sll0729 gene was still completely inactivated and the GGCC sites remained unmethylated. The suppressor strains showed smaller cell size, lowered DNA content per cell, and decreased tolerance against UV compared to wild type. Promoter assays revealed that the transcription of the sll0470 gene was still stimulated in the suppressor clones. Proteomics identified decreased levels of DNA topoisomerase 4 subunit A in suppressor cells. Collectively, these results indicate that GG m4CC methylation is involved in the regulation of gene expression, in the fine-tuning of DNA replication, and DNA repair mechanisms.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The Epigenomic Landscape of Prokaryotes

          DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities of 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active ‘orphan’ MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803.

            There has been an increasing interest in cyanobacteria because these photosynthetic organisms convert solar energy into biomass and because of their potential for the production of biofuels. However, the exploitation of cyanobacteria for bioengineering requires knowledge of their transcriptional organization. Using differential RNA sequencing, we have established a genome-wide map of 3,527 transcriptional start sites (TSS) of the model organism Synechocystis sp. PCC6803. One-third of all TSS were located upstream of an annotated gene; another third were on the reverse complementary strand of 866 genes, suggesting massive antisense transcription. Orphan TSS located in intergenic regions led us to predict 314 noncoding RNAs (ncRNAs). Complementary microarray-based RNA profiling verified a high number of noncoding transcripts and identified strong ncRNA regulations. Thus, ∼64% of all TSS give rise to antisense or ncRNAs in a genome that is to 87% protein coding. Our data enhance the information on promoters by a factor of 40, suggest the existence of additional small peptide-encoding mRNAs, and provide corrected 5' annotations for many genes of this cyanobacterium. The global TSS map will facilitate the use of Synechocystis sp. PCC6803 as a model organism for further research on photosynthesis and energy research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Comparative Analysis of the Primary Transcriptome of Synechocystis sp. PCC 6803

              RNA-seq and especially differential RNA-seq-type transcriptomic analyses (dRNA-seq) are powerful analytical tools, as they not only provide insights into gene expression changes but also provide detailed information about all promoters active at a given moment, effectively giving a deep insight into the transcriptional landscape. Synechocystis sp. PCC 6803 (Synechocystis 6803) is a unicellular model cyanobacterium that is widely used in research fields from ecology, photophysiology to systems biology, modelling and biotechnology. Here, we analysed the response of the Synechocystis 6803 primary transcriptome to different, environmentally relevant stimuli. We established genome-wide maps of the transcriptional start sites active under 10 different conditions relevant for photosynthetic growth and identified 4,091 transcriptional units, which provide information about operons, 5′ and 3′ untranslated regions (UTRs). Based on a unique expression factor, we describe regulons and relevant promoter sequences at single-nucleotide resolution. Finally, we report several sRNAs with an intriguing expression pattern and therefore likely function, specific for carbon depletion (CsiR1), nitrogen depletion (NsiR4), phosphate depletion (PsiR1), iron stress (IsaR1) or photosynthesis (PsrR1). This dataset is accompanied by comprehensive information providing extensive visualization and data access to allow an easy-to-use approach for the design of experiments, the incorporation into modelling studies of the regulatory system and for comparative analyses.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                05 June 2019
                2019
                : 10
                : 1233
                Affiliations
                [1] 1Department of Plant Physiology, University of Rostock , Rostock, Germany
                [2] 2Faculty of Biology, Genetics & Experimental Bioinformatics, University of Freiburg , Freiburg im Breisgau, Germany
                [3] 3Department of Solar Materials, Helmholtz-Centre for Environmental Research , Leipzig, Germany
                [4] 4Department of Bioscience, Tokyo University of Agriculture , Tokyo, Japan
                [5] 5Core Facility Proteome Analysis, University Medicine Rostock , Rostock, Germany
                [6] 6Freiburg Institute for Advanced Studies, University of Freiburg , Freiburg im Breisgau, Germany
                [7] 7Department Life, Light and Matter, University of Rostock , Rostock, Germany
                Author notes

                Edited by: Weiwen Zhang, Tianjin University, China

                Reviewed by: Feng Ge, Chinese Academy of Sciences, China; Luis Lopez-Maury, University of Seville, Spain

                *Correspondence: Martin Hagemann, martin.hagemann@ 123456uni-rostock.de

                This article was submitted to Microbial Physiology and Metabolism, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.01233
                6560206
                31231331
                dce0296e-076b-4fbb-8f6b-407888048bbe
                Copyright © 2019 Gärtner, Klähn, Watanabe, Mikkat, Scholz, Hess and Hagemann.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 February 2019
                : 17 May 2019
                Page count
                Figures: 7, Tables: 2, Equations: 0, References: 43, Pages: 14, Words: 0
                Funding
                Funded by: Deutsche Forschungsgemeinschaft 10.13039/501100001659
                Award ID: HA2002/17-1
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                dna methylation,dna methyltransferase,dna topoisomerase,proteome,restriction analysis,suppressor mutant,transcriptome,uv tolerance

                Comments

                Comment on this article