Blog
About

6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PPARγ Controls Ectopic Adipogenesis and Cross-Talks with Myogenesis During Skeletal Muscle Regeneration

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Skeletal muscle is a regenerative tissue which can repair damaged myofibers through the activation of tissue-resident muscle stem cells (MuSCs). Many muscle diseases with impaired regeneration cause excessive adipose tissue accumulation in muscle, alter the myogenic fate of MuSCs, and deregulate the cross-talk between MuSCs and fibro/adipogenic progenitors (FAPs), a bi-potent cell population which supports myogenesis and controls intra-muscular fibrosis and adipocyte formation. In order to better characterize the interaction between adipogenesis and myogenesis, we studied muscle regeneration and MuSC function in whole body Pparg null mice generated by epiblast-specific Cre/lox deletion ( Pparg Δ/Δ ). We demonstrate that deletion of PPARγ completely abolishes ectopic muscle adipogenesis during regeneration and impairs MuSC expansion and myogenesis after injury. Ex vivo assays revealed that perturbed myogenesis in Pparg Δ/Δ mice does not primarily result from intrinsic defects of MuSCs or from perturbed myogenic support from FAPs. The immune transition from a pro- to anti-inflammatory MuSC niche during regeneration is perturbed in Pparg Δ/Δ mice and suggests that PPARγ signaling in macrophages can interact with ectopic adipogenesis and influence muscle regeneration. Altogether, our study demonstrates that a PPARγ-dependent adipogenic response regulates muscle fat infiltration during regeneration and that PPARγ is required for MuSC function and efficient muscle repair.

          Related collections

          Most cited references 54

          • Record: found
          • Abstract: not found
          • Article: not found

          SATELLITE CELL OF SKELETAL MUSCLE FIBERS

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance.

            Obesity and insulin resistance, the cardinal features of metabolic syndrome, are closely associated with a state of low-grade inflammation. In adipose tissue chronic overnutrition leads to macrophage infiltration, resulting in local inflammation that potentiates insulin resistance. For instance, transgenic expression of Mcp1 (also known as chemokine ligand 2, Ccl2) in adipose tissue increases macrophage infiltration, inflammation and insulin resistance. Conversely, disruption of Mcp1 or its receptor Ccr2 impairs migration of macrophages into adipose tissue, thereby lowering adipose tissue inflammation and improving insulin sensitivity. These findings together suggest a correlation between macrophage content in adipose tissue and insulin resistance. However, resident macrophages in tissues display tremendous heterogeneity in their activities and functions, primarily reflecting their local metabolic and immune microenvironment. While Mcp1 directs recruitment of pro-inflammatory classically activated macrophages to sites of tissue damage, resident macrophages, such as those present in the adipose tissue of lean mice, display the alternatively activated phenotype. Despite their higher capacity to repair tissue, the precise role of alternatively activated macrophages in obesity-induced insulin resistance remains unknown. Using mice with macrophage-specific deletion of the peroxisome proliferator activated receptor-gamma (PPARgamma), we show here that PPARgamma is required for maturation of alternatively activated macrophages. Disruption of PPARgamma in myeloid cells impairs alternative macrophage activation, and predisposes these animals to development of diet-induced obesity, insulin resistance, and glucose intolerance. Furthermore, gene expression profiling revealed that downregulation of oxidative phosphorylation gene expression in skeletal muscle and liver leads to decreased insulin sensitivity in these tissues. Together, our findings suggest that resident alternatively activated macrophages have a beneficial role in regulating nutrient homeostasis and suggest that macrophage polarization towards the alternative state might be a useful strategy for treating type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fat and beyond: the diverse biology of PPARgamma.

              The nuclear receptor PPARgamma is a ligand-activated transcription factor that plays an important role in the control of gene expression linked to a variety of physiological processes. PPARgamma was initially characterized as the master regulator for the development of adipose cells. Ligands for PPARgamma include naturally occurring fatty acids and the thiazolidinedione (TZD) class of antidiabetic drugs. Activation of PPARgamma improves insulin sensitivity in rodents and humans through a combination of metabolic actions, including partitioning of lipid stores and the regulation of metabolic and inflammatory mediators termed adipokines. PPARgamma signaling has also been implicated in the control of cell proliferation, atherosclerosis, macrophage function, and immunity. Here, we review recent advances in our understanding of the diverse biological actions of PPARgamma with an eye toward the expanding therapeutic potential of PPARgamma agonist drugs.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                13 July 2018
                July 2018
                : 19
                : 7
                Affiliations
                [1 ]Nestle Institute of Health Sciences, EPFL Innovation Park, Building H, EPFL Campus, 1015 Lausanne, Switzerland
                [2 ]Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; beatrice.desvergne@ 123456unil.ch (B.D.); Federica.Gilardi@ 123456hcuge.ch (F.G.)
                [3 ]School of Life Sciences, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland
                Author notes
                [†]

                These authors contribute equally to this work.

                Article
                ijms-19-02044
                10.3390/ijms19072044
                6073847
                30011852
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Comments

                Comment on this article