50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficient Capture of Infected Neutrophils by Dendritic Cells in the Skin Inhibits the Early Anti-Leishmania Response

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neutrophils and dendritic cells (DCs) converge at localized sites of acute inflammation in the skin following pathogen deposition by the bites of arthropod vectors or by needle injection. Prior studies in mice have shown that neutrophils are the predominant recruited and infected cells during the earliest stage of Leishmania major infection in the skin, and that neutrophil depletion promotes host resistance to sand fly transmitted infection. How the massive influx of neutrophils aimed at wound repair and sterilization might modulate the function of DCs in the skin has not been previously addressed. The infected neutrophils recovered from the skin expressed elevated apoptotic markers compared to uninfected neutrophils, and were preferentially captured by dermal DCs when injected back into the mouse ear dermis. Following challenge with L. major directly, the majority of the infected DCs recovered from the skin at 24 hr stained positive for neutrophil markers, indicating that they acquired their parasites via uptake of infected neutrophils. When infected, dermal DCs were recovered from neutrophil depleted mice, their expression of activation markers was markedly enhanced, as was their capacity to present Leishmania antigens ex vivo. Neutrophil depletion also enhanced the priming of L. major specific CD4 + T cells in vivo. The findings suggest that following their rapid uptake by neutrophils in the skin, L. major exploits the immunosuppressive effects associated with the apoptotic cell clearance function of DCs to inhibit the development of acquired resistance until the acute neutrophilic response is resolved.

          Author Summary

          Prior studies in mice have shown that the inoculation of Leishmania major into the skin by sand fly bite or by needle provokes a massive recruitment of neutrophils that take up the parasite, and that this response somehow suppresses immunity since neutrophil depletion results in better control of the infection. We investigated how neutrophils recruited to the injection site might interact with and suppress the function of dendritic cells (DCs) in the skin. Infected neutrophils recovered from the skin expressed increased levels of apoptotic markers compared to uninfected neutrophils, and were efficiently taken up by dermal DCs when injected back into the skin. When dermal DCs were permitted to take up parasites in the absence of neutrophils, their expression of activation markers and their ability to present Leishmania antigens were enhanced. Neutrophil depletion also enhanced the activation of Leishmania specific CD4 + T cells in vivo. The results suggest that for insect borne pathogens like Leishmania that provoke a strong inflammatory response at the site of infection, the immunosuppressive effects associated with the apoptotic cell clearance function of DCs will inhibit the early development of immunity.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells.

          Langerhans cells (LCs) are a specialized subset of dendritic cells (DCs) that populate the epidermal layer of the skin. Langerin is a lectin that serves as a valuable marker for LCs in mice and humans. In recent years, new mouse models have led to the identification of other langerin(+) DC subsets that are not present in the epidermis, including a subset of DCs that is found in most non-lymphoid tissues. In this Review we describe new developments in the understanding of the biology of LCs and other langerin(+) DCs and discuss the challenges that remain in identifying the role of different DC subsets in tissue immunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How human neutrophils kill and degrade microbes: an integrated view.

            Neutrophils constitute the dominant cell in the circulation that mediates the earliest innate immune human responses to infection. The morbidity and mortality from infection rise dramatically in patients with quantitative or qualitative neutrophil defects, providing clinical confirmation of the important role of normal neutrophils for human health. Neutrophil-dependent anti-microbial activity against ingested microbes represents the collaboration of multiple agents, including those prefabricated during granulocyte development in the bone marrow and those generated de novo following neutrophil activation. Furthermore, neutrophils cooperate with extracellular agents as well as other immune cells to optimally kill and degrade invading microbes. This brief review focuses attention on two examples of the integrated nature of neutrophil-mediated anti-microbial action within the phagosome. The importance and complexity of myeloperoxidase-mediated events illustrate a collaboration of anti-microbial responses that are endogenous to the neutrophil, whereas the synergy between the phagocyte NADPH (nicotinamide adenine dinucleotide phosphate) oxidase and plasma-derived group IIA phospholipase A(2) exemplifies the collective effects of the neutrophil with an exogenous factor to achieve degradation of ingested staphylococci.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Consequences of Cell Death

              Cell death by necrosis is typically associated with inflammation, in contrast to apoptosis. We have identified additional distinctions between the two types of death that occur at the level of dendritic cells (DCs) and which influence the induction of immunity. DCs must undergo changes termed maturation to act as potent antigen-presenting cells. Here, we investigated whether exposure to apoptotic or necrotic cells affected DC maturation. We found that immature DCs efficiently phagocytose a variety of apoptotic and necrotic tumor cells. However, only exposure to the latter induces maturation. The mature DCs express high levels of the DC-restricted markers CD83 and lysosome-associated membrane glycoprotein (DC-LAMP) and the costimulatory molecules CD40 and CD86. Furthermore, they develop into powerful stimulators of both CD4+ and CD8+ T cells. Cross-presentation of antigens to CD8+ T cells occurs after uptake of apoptotic cells. We demonstrate here that optimal cross-presentation of antigens from tumor cells requires two steps: phagocytosis of apoptotic cells by immature DCs, which provides antigenic peptides for major histocompatibility complex class I and class II presentation, and a maturation signal that is delivered by exposure to necrotic tumor cells, their supernatants, or standard maturation stimuli, e.g., monocyte-conditioned medium. Thus, DCs are able to distinguish two types of tumor cell death, with necrosis providing a control that is critical for the initiation of immunity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                February 2012
                February 2012
                16 February 2012
                : 8
                : 2
                : e1002536
                Affiliations
                [1 ]Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Maryland, United States of America
                [2 ]Division of Emerging and Transfusion Transmitted Diseases, OBRR, CBER, U.S. Food and Drug Administration, Bethesda, Maryland, United States of America
                Imperial College London, United Kingdom
                Author notes

                Conceived and designed the experiments: FLR DS. Performed the experiments: FLR NCP. Analyzed the data: FLR NCP DS. Contributed reagents/materials/analysis tools: AD. Wrote the paper: FLR DS.

                Article
                PPATHOGENS-D-11-01509
                10.1371/journal.ppat.1002536
                3280984
                22359507
                dcfc813e-86d8-45c9-af6c-790fba815eb4
                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
                History
                : 11 July 2011
                : 3 January 2012
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Immunology
                Medicine
                Infectious Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article