Blog
About

4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Opiates increase the number of hypocretin-producing cells in human and mouse brain and reverse cataplexy in a mouse model of narcolepsy

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The changes in brain function that perpetuate opiate addiction are unclear. In our studies of human narcolepsy, a disease caused by loss of immunohistochemically detected hypocretin (orexin) neurons, we encountered a control brain (from an apparently neurologically normal individual) with 50% more hypocretin neurons than other control human brains that we had studied. We discovered that this individual was a heroin addict. Studying five postmortem brains from heroin addicts, we report that the brain tissue had, on average, 54% more immunohistochemically detected neurons producing hypocretin than did control brains from neurologically normal subjects. Similar increases in hypocretin-producing cells could be induced in wild-type mice by long-term (but not short-term) administration of morphine. The increased number of detected hypocretin neurons was not due to neurogenesis and outlasted morphine administration by several weeks. The number of neurons containing melanin-concentrating hormone, which are in the same hypothalamic region as hypocretin-producing cells, did not change in response to morphine administration. Morphine administration restored the population of detected hypocretin cells to normal numbers in transgenic mice in which these neurons had been partially depleted. Morphine administration also decreased cataplexy in mice made narcoleptic by the depletion of hypocretin neurons. These findings suggest that opiate agonists may have a role in the treatment of narcolepsy, a disorder caused by hypocretin neuron loss, and that increased numbers of hypocretin-producing cells may play a role in maintaining opiate addiction.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: not found

          A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains.

          We explored the role of hypocretins in human narcolepsy through histopathology of six narcolepsy brains and mutation screening of Hcrt, Hcrtr1 and Hcrtr2 in 74 patients of various human leukocyte antigen and family history status. One Hcrt mutation, impairing peptide trafficking and processing, was found in a single case with early onset narcolepsy. In situ hybridization of the perifornical area and peptide radioimmunoassays indicated global loss of hypocretins, without gliosis or signs of inflammation in all human cases examined. Although hypocretin loci do not contribute significantly to genetic predisposition, most cases of human narcolepsy are associated with a deficient hypocretin system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reduced number of hypocretin neurons in human narcolepsy.

            Murine and canine narcolepsy can be caused by mutations of the hypocretin (Hcrt) (orexin) precursor or Hcrt receptor genes. In contrast to these animal models, most human narcolepsy is not familial, is discordant in identical twins, and has not been linked to mutations of the Hcrt system. Thus, the cause of human narcolepsy remains unknown. Here we show that human narcoleptics have an 85%-95% reduction in the number of Hcrt neurons. Melanin-concentrating hormone (MCH) neurons, which are intermixed with Hcrt cells in the normal brain, are not reduced in number, indicating that cell loss is relatively specific for Hcrt neurons. The presence of gliosis in the hypocretin cell region is consistent with a degenerative process being the cause of the Hcrt cell loss in narcolepsy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypothalamic orexin neurons regulate arousal according to energy balance in mice.

              Mammals respond to reduced food availability by becoming more wakeful and active, yet the central pathways regulating arousal and instinctual motor programs (such as food seeking) according to homeostatic need are not well understood. We demonstrate that hypothalamic orexin neurons monitor indicators of energy balance and mediate adaptive augmentation of arousal in response to fasting. Activity of isolated orexin neurons is inhibited by glucose and leptin and stimulated by ghrelin. Orexin expression of normal and ob/ob mice correlates negatively with changes in blood glucose, leptin, and food intake. Transgenic mice, in which orexin neurons are ablated, fail to respond to fasting with increased wakefulness and activity. These findings indicate that orexin neurons provide a crucial link between energy balance and arousal.
                Bookmark

                Author and article information

                Journal
                Science Translational Medicine
                Sci. Transl. Med.
                American Association for the Advancement of Science (AAAS)
                1946-6234
                1946-6242
                June 27 2018
                June 27 2018
                June 27 2018
                June 27 2018
                : 10
                : 447
                : eaao4953
                Article
                10.1126/scitranslmed.aao4953
                © 2018

                Comments

                Comment on this article