23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Big Data and machine learning in radiation oncology: State of the art and future prospects

      , ,
      Cancer Letters
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Predicting dose-volume histograms for organs-at-risk in IMRT planning.

          The objective of this work was to develop a quality control (QC) tool to reduce intensity modulated radiotherapy (IMRT) planning variability and improve treatment plan quality using mathematical models that predict achievable organ-at-risk (OAR) dose-volume histograms (DVHs) based on individual patient anatomy. A mathematical framework to predict achievable OAR DVHs was derived based on the correlation of expected dose to the minimum distance from a voxel to the PTV surface. OAR voxels sharing a range of minimum distances were computed as subvolumes. A three-parameter, skew-normal probability distribution was used to fit subvolume dose distributions, and DVH prediction models were developed by fitting the evolution of the skew-normal parameters as a function of distance with polynomials. Cohorts of 20 prostate and 24 head-and-neck IMRT plans with identical clinical objectives were used to train organ-specific average models for rectum, bladder, and parotids. A sum of residuals analysis quantifying the integrated difference between the clinically approved DVH and predicted DVH evaluated similarity between DVHs. The ability of the average models to prospectively predict DVHs was evaluated on an independent validation cohort of 20 prostate plans. Statistical comparison of the sums of residuals between training and validation cohorts quantified the accuracy of the average model. Restricted sums of residuals (RSR) were used to identify potential outliers, where large values of RSR indicate a clinical DVH that exceeds the predicted DVH by a considerable amount. A refined model was obtained for each organ by excluding outliers with large RSR values from the training cohort. The refined model was applied to the original training cohort and restricted sums of residuals were utilized to estimate potential DVH improvements. All cases were replanned and evaluated by the physician that approved the original plan. The ability of the refined models to correctly identify outliers was assessed using the residual sum between the original and replanned DVHs to quantify dosimetric gains realized under replanning. Statistical analysis of average sum of residuals for rectum (SR(rectum)=0.003±0.037), bladder (SR(bladder)=-0.008±0.037), and parotid (SR(parotid)=-0.003±0.060) training cohorts yielded mean values near zero and small with respect to the standard deviations, indicating that the average models are capturing the essential behavior of the training cohorts. The predictive abilities of the average rectum and bladder models were statistically indistinguishable between the training and validation sets, with SR(rectum)=0.002±0.044 and SR(bladder)=-0.018±0.058 for the validation set. The refined models' ability to detect outliers and predict achievable OAR DVHs was demonstrated by a strong correlation between predicted gains (RSR) and realized gains after replanning with sample correlation coefficients of r = 0.92 for the rectum, r = 0.88 for the bladder, and r = 0.84 for the parotid glands. The results demonstrate that our mathematical framework and modest training cohorts successfully predict achievable OAR DVHs based on individual patient anatomy. The models correctly identified suboptimal plans that demonstrated further OAR sparing after replanning. This modeling technique requires no manual intervention except for appropriate selection of a training set with identical evaluation criteria. Clinical implementation is in progress to evaluate impact on real-time IMRT QC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A planning quality evaluation tool for prostate adaptive IMRT based on machine learning.

            To ensure plan quality for adaptive IMRT of the prostate, we developed a quantitative evaluation tool using a machine learning approach. This tool generates dose volume histograms (DVHs) of organs-at-risk (OARs) based on prior plans as a reference, to be compared with the adaptive plan derived from fluence map deformation. Under the same configuration using seven-field 15 MV photon beams, DVHs of OARs (bladder and rectum) were estimated based on anatomical information of the patient and a model learned from a database of high quality prior plans. In this study, the anatomical information was characterized by the organ volumes and distance-to-target histogram (DTH). The database consists of 198 high quality prostate plans and was validated with 14 cases outside the training pool. Principal component analysis (PCA) was applied to DVHs and DTHs to quantify their salient features. Then, support vector regression (SVR) was implemented to establish the correlation between the features of the DVH and the anatomical information. DVH/DTH curves could be characterized sufficiently just using only two or three truncated principal components, thus, patient anatomical information was quantified with reduced numbers of variables. The evaluation of the model using the test data set demonstrated its accuracy approximately 80% in prediction and effectiveness in improving ART planning quality. An adaptive IMRT plan quality evaluation tool based on machine learning has been developed, which estimates OAR sparing and provides reference in evaluating ART.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid-learning system for cancer care.

              Compelling public interest is propelling national efforts to advance the evidence base for cancer treatment and control measures and to transform the way in which evidence is aggregated and applied. Substantial investments in health information technology, comparative effectiveness research, health care quality and value, and personalized medicine support these efforts and have resulted in considerable progress to date. An emerging initiative, and one that integrates these converging approaches to improving health care, is "rapid-learning health care." In this framework, routinely collected real-time clinical data drive the process of scientific discovery, which becomes a natural outgrowth of patient care. To better understand the state of the rapid-learning health care model and its potential implications for oncology, the National Cancer Policy Forum of the Institute of Medicine held a workshop entitled "A Foundation for Evidence-Driven Practice: A Rapid-Learning System for Cancer Care" in October 2009. Participants examined the elements of a rapid-learning system for cancer, including registries and databases, emerging information technology, patient-centered and -driven clinical decision support, patient engagement, culture change, clinical practice guidelines, point-of-care needs in clinical oncology, and federal policy issues and implications. This Special Article reviews the activities of the workshop and sets the stage to move from vision to action.
                Bookmark

                Author and article information

                Journal
                Cancer Letters
                Cancer Letters
                Elsevier BV
                03043835
                November 2016
                November 2016
                : 382
                : 1
                : 110-117
                Article
                10.1016/j.canlet.2016.05.033
                27241666
                dd0cd617-602f-48e4-ba1f-0832796e6c6a
                © 2016
                History

                Comments

                Comment on this article