68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Angiotensin II infusion promotes ascending aortic aneurysms: attenuation by CCR2 deficiency in apoE −/− mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          AngII (angiotensin II) induces atherosclerosis and AAAs (abdominal aortic aneurysms) through multiple proposed mechanisms, including chemotaxis. Therefore, we determined the effects of whole-body deficiency of the chemokine receptor CCR2 (CC chemokine receptor 2) on these diseases. To meet this objective, apoE (apolipoprotein E) −/− mice that were either CCR2 +/+ or CCR2 −/−, were infused with either saline or AngII (1000 ng·kg −1 of body weight·min −1) for 28 days via mini-osmotic pumps. Deficiency of CCR2 markedly attenuated both atherosclerosis and AAAs, unrelated to systolic blood pressure or plasma cholesterol concentrations. During the course of the present study, we also observed that AngII infusion led to large dilatations that were restricted to the ascending aortic region of apoE −/− mice. The aortic media in most of the dilated area was thickened. In regions of medial thickening, distinct elastin layers were discernable. There was an expansion of the distance between elastin layers in a gradient from the intimal to the adventitial aspect of the media. This pathology differed in a circumscribed area of the anterior region of ascending aortas in which elastin breaks were focal and almost transmural. All regions of the ascending aorta of AngII-infused mice had diffuse medial macrophage accumulation. Deficiency of CCR2 greatly attenuated the AngII-induced lumen dilatation in the ascending aorta. This new model of ascending aortic aneurysms has pathology that differs markedly from AngII-induced atherosclerosis or AAAs, but all vascular pathologies were attenuated by CCR2 deficiency.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice.

          Increased plasma concentrations of angiotension II (Ang II) have been implicated in atherogenesis. To examine this relationship directly, we infused Ang II or vehicle for 1 month via osmotic minipumps into mature apoE(-/-) mice. These doses of Ang II did not alter arterial blood pressure, body weight, serum cholesterol concentrations, or distribution of lipoprotein cholesterol. However, Ang II infusions promoted an increased severity of aortic atherosclerotic lesions. These Ang II-induced lesions were predominantly lipid-laden macrophages and lymphocytes; moreover, Ang II promoted a marked increase in the number of macrophages present in the adventitial tissue underlying lesions. Unexpectedly, pronounced abdominal aortic aneurysms were present in apoE(-/-) mice infused with Ang II. Sequential sectioning of aneurysmal abdominal aorta revealed two major characteristics: an intact artery that is surrounded by a large remodeled adventitia, and a medial break with pronounced dilation and more modestly remodeled adventitial tissue. Although no atherosclerotic lesions were visible at the medial break point, the presence of hyperlipidemia was required because infusions of Ang II into apoE(+/+) mice failed to generate aneurysms. These results demonstrate that increased plasma concentrations of Ang II have profound and rapid effects on vascular pathology when combined with hyperlipidemia, in the absence of hemodynamic influences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fate of the mammalian cardiac neural crest.

            A subpopulation of neural crest termed the cardiac neural crest is required in avian embryos to initiate reorganization of the outflow tract of the developing cardiovascular system. In mammalian embryos, it has not been previously experimentally possible to study the long-term fate of this population, although there is strong inference that a similar population exists and is perturbed in a number of genetic and teratogenic contexts. We have employed a two-component genetic system based on Cre/lox recombination to label indelibly the entire mouse neural crest population at the time of its formation, and to detect it at any time thereafter. Labeled cells are detected throughout gestation and in postnatal stages in major tissues that are known or predicted to be derived from neural crest. Labeling is highly specific and highly efficient. In the region of the heart, neural-crest-derived cells surround the pharyngeal arch arteries from the time of their formation and undergo an altered distribution coincident with the reorganization of these vessels. Labeled cells populate the aorticopulmonary septum and conotruncal cushions prior to and during overt septation of the outflow tract, and surround the thymus and thyroid as these organs form. Neural-crest-derived mesenchymal cells are abundantly distributed in midgestation (E9.5-12.5), and adult derivatives of the third, fourth and sixth pharyngeal arch arteries retain a substantial contribution of labeled cells. However, the population of neural-crest-derived cells that infiltrates the conotruncus and which surrounds the noncardiac pharyngeal organs is either overgrown or selectively eliminated as development proceeds, resulting for these tissues in a modest to marginal contribution in late fetal and postnatal life.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Angiotensin II blockade and aortic-root dilation in Marfan's syndrome.

              Progressive enlargement of the aortic root, leading to dissection, is the main cause of premature death in patients with Marfan's syndrome. Recent data from mouse models of Marfan's syndrome suggest that aortic-root enlargement is caused by excessive signaling by transforming growth factor beta (TGF-beta) that can be mitigated by treatment with TGF-beta antagonists, including angiotensin II-receptor blockers (ARBs). We evaluated the clinical response to ARBs in pediatric patients with Marfan's syndrome who had severe aortic-root enlargement. We identified 18 pediatric patients with Marfan's syndrome who had been followed during 12 to 47 months of therapy with ARBs after other medical therapy had failed to prevent progressive aortic-root enlargement. The ARB was losartan in 17 patients and irbesartan in 1 patient. We evaluated the efficacy of ARB therapy by comparing the rates of change in aortic-root diameter before and after the initiation of treatment with ARBs. The mean (+/-SD) rate of change in aortic-root diameter decreased significantly from 3.54+/-2.87 mm per year during previous medical therapy to 0.46+/-0.62 mm per year during ARB therapy (P<0.001). The deviation of aortic-root enlargement from normal, as expressed by the rate of change in z scores, was reduced by a mean difference of 1.47 z scores per year (95% confidence interval, 0.70 to 2.24; P<0.001) after the initiation of ARB therapy. The sinotubular junction, which is prone to dilation in Marfan's syndrome as well, also showed a reduced rate of change in diameter during ARB therapy (P<0.05), whereas the distal ascending aorta, which does not normally become dilated in Marfan's syndrome, was not affected by ARB therapy. In a small cohort study, the use of ARB therapy in patients with Marfan's syndrome significantly slowed the rate of progressive aortic-root dilation. These findings require confirmation in a randomized trial. 2008 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                Clin Sci (Lond)
                cls
                CS
                Clinical Science (London, England : 1979)
                Portland Press Ltd.
                0143-5221
                1470-8736
                15 January 2010
                9 March 2010
                : 118
                : Pt 11
                : 681-689
                Affiliations
                *Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, U.S.A.
                †Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40536, U.S.A.
                ‡Department of Medicine, University of Kentucky, Lexington, KY 40536, U.S.A.
                §Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA 94158-2261, U.S.A.
                Author notes
                Correspondence: Professor Alan Daugherty (email Alan.Daugherty@ 123456uky.edu ).
                Article
                cs1180681
                10.1042/CS20090372
                2841499
                20088827
                dd1930d5-3bb0-4bd7-bc71-49fb3e94678a
                © 2010 The Author(s) The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 July 2009
                : 4 January 2010
                : 15 January 2010
                Page count
                Figures: 5, Tables: 1, References: 42, Pages: 9
                Categories
                Research Article
                S10

                Medicine
                elastin,aaa, abdominal aortic aneurysm,angiotensin,aorta,chemokine,macrophage,angii, angiotensin ii,mcp, monocyte chemoattractant protein,at1 receptor, angii type 1 receptor,apoe, apolipoprotein e,aneurysm,tgf-β, transforming growth factor-β,ccr2, cc chemokine receptor 2

                Comments

                Comment on this article