22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SARS-CoV-2 candidate vaccine ChAdOx1 nCoV-19 infection of human cell lines reveals a normal low range of viral backbone gene expression alongside very high levels of SARS-CoV-2 S glycoprotein expression.

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: ChAdOx1 nCoV-19 is a recombinant adenovirus vaccine candidate against SARS-CoV-2. Although replication defective in normal cells, 28kbp of adenovirus genes are delivered to the cell nucleus alongside the SARS-CoV-2 S glycoprotein gene. Methods: We used direct RNA sequencing to analyse transcript expression from the ChAdOx1 nCoV-19 genome in human MRC-5 and A549 cell lines that are non-permissive for vector replication alongside the replication permissive cell line, HEK293. In addition, we used quantitative proteomics to study over time the proteome and phosphoproteome of A549 and MRC5 cells infected with the ChAdOx1 nCoV-19 vaccine candidate. Results: The expected SARS-CoV-2 S coding transcript dominated in all cell lines. We also detected rare S transcripts with aberrant splice patterns or polyadenylation site usage. Adenovirus vector transcripts were almost absent in MRC-5 cells but in A549 cells there was a broader repertoire of adenoviral gene expression at very low levels. Proteomically, in addition to S glycoprotein, we detected multiple adenovirus proteins in A549 cells compared to just one in MRC5 cells. Conclusions: Overall the ChAdOx1 nCoV-19 vaccine’s transcriptomic and proteomic repertoire is as expected. The combined transcriptomic and proteomics approaches provide an unparalleled insight into the behaviour of this important class of vaccine candidate and illustrate the potential of this technique to inform future viral vaccine vector design.

          Related collections

          Author and article information

          Contributors
          (View ORCID Profile)
          Journal
          Research Square
          October 20 2020
          Affiliations
          [1 ]University of Bristol
          [2 ]University of Oxford
          [3 ]Universty of Bristol
          Article
          10.21203/rs.3.rs-94837/v1
          dd19fd81-e1b3-432e-ba96-2771db4ba932
          © 2020

          https://creativecommons.org/licenses/by/4.0/

          History

          Comments

          Comment on this article