25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sustained nitric oxide (NO)-releasing compound reverses dysregulated NO signal transduction in priapism.

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We evaluated the therapeutic potential of a sustained nitric oxide (NO)-releasing compound to correct the molecular hallmarks and pathophysiology of priapism, an important but poorly characterized erectile disorder. 1,5-Bis-(dihexyl-N-nitrosoamino)-2,4-dinitrobenzene (C6') and an inactive form of the compound [1,5-bis-(dihexylamino)-2,4-dinitrobenzene (C6)] were tested in neuronal cell cultures and penile lysates for NO release (Griess assay) and biological activity (cGMP production). The effect of local depot C6' or C6 was evaluated in mice with a priapic phenotype due to double neuronal and endothelial NO synthase deletion (dNOS(-/-)) or human sickle hemoglobin transgenic expression (Sickle). Changes in NO signaling molecules and reactive oxygen species (ROS) surrogates were assessed by Western blot. The physiological response after C6' treatment was assessed using an established model of electrically stimulated penile erection. C6' generated NO, increased cGMP, and dose dependently increased NO metabolites. C6' treatment reversed abnormalities in key penile erection signaling molecules, including phosphodiesterase type 5, phosphorylated endothelial nitric oxide synthase, and phosphorylated vasodilator-stimulated phosphoprotein. In Sickle mice, C6' also attenuated the increased ROS markers gp91(phox), 4-hydroxynonenal, and 3-nitrotyrosine. Finally, C6' corrected the excessive priapic erection response of dNOS(-/-) mice. Exogenous sustained NO release from C6' corrects pathological erectile signaling in mouse models of priapism and suggests novel approaches to human therapy.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Hypertension in mice lacking the gene for endothelial nitric oxide synthase.

          Nitric oxide (NO), a potent vasodilator produced by endothelial cells, is thought to be the endothelium-dependent relaxing factor (EDRF) which mediates vascular relaxation in response to acetylcholine, bradykinin and substance P in many vascular beds. NO has been implicated in the regulation of blood pressure and regional blood flow, and also affects vascular smooth-muscle proliferation and inhibits platelet aggregation and leukocyte adhesion. Abnormalities in endothelial production of NO occur in atherosclerosis, diabetes and hypertension. Pharmacological blockade of NO production with arginine analogues such as L-nitroarginine (L-NA) or L-N-arginine methyl ester affects multiple isoforms of nitric oxide synthase (NOS), and so cannot distinguish their physiological roles. To study the role of endothelial NOS (eNOS) in vascular function, we disrupted the gene encoding eNOS in mice. Endothelium-derived relaxing factor activity, as assayed by acetylcholine-induced relaxation, is absent, and the eNOS mutant mice are hypertensive. Thus eNOS mediates basal vasodilation. Responses to NOS blockade in the mutant mice suggest that non-endothelial isoforms of NOS may be involved in maintaining blood pressure.
            • Record: found
            • Abstract: found
            • Article: not found

            eNOS uncoupling and endothelial dysfunction in aged vessels.

            Endothelial nitric oxide synthase (eNOS) uncoupling is a mechanism that leads to endothelial dysfunction. Previously, we reported that shear stress-induced release of nitric oxide in vessels of aged rats was significantly reduced and was accompanied by increased production of superoxide (18, 27). In the present study, we investigated the influence of aging on eNOS uncoupling. Mesenteric arteries were isolated from young (3 mo) and aged (24 mo) C57 BL/6J mice. The expression of eNOS protein in young vs. aged mice was not significantly different. However, the aged mice had remarkable increases in the ratio of eNOS monomers to dimers and N(omega)-nitro-l-arginine methyl ester-inhibitable superoxide formation. The level of nitrotyrosine in the total protein and precipitated eNOS of aged vessels was increased compared with that in young vessels. HPLC analysis indicated a reduced level of tetrahydrobiopterin (BH4), an essential cofactor for eNOS, in the mesenteric arteries of aged mice. Quantitative PCR results implied that the diminished BH4 may result from the decreased expressions of GTP cyclohydrolase I and sepiapterin reductase, enzymes involved in BH4 biosynthesis. When isolated and cannulated second-order mesenteric arteries (approximately 150 microm) from aged mice were treated with sepiapterin, acetylcholine-induced, endothelium-dependent vasodilation improved significantly, which was accompanied by stabilization of the eNOS dimer. These data suggest that eNOS uncoupling and increased nitrosylation of eNOS, decreased expressions of GTP cyclohydrolase I and sepiapterin reductase, and subsequent reduced BH4 bioavailability may be important contributors of endothelial dysfunction in aged vessels.
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of penile erection and basis for pharmacological treatment of erectile dysfunction.

              Erection is basically a spinal reflex that can be initiated by recruitment of penile afferents, both autonomic and somatic, and supraspinal influences from visual, olfactory, and imaginary stimuli. Several central transmitters are involved in the erectile control. Dopamine, acetylcholine, nitric oxide (NO), and peptides, such as oxytocin and adrenocorticotropin/α-melanocyte-stimulating hormone, have a facilitatory role, whereas serotonin may be either facilitatory or inhibitory, and enkephalins are inhibitory. The balance between contractant and relaxant factors controls the degree of contraction of the smooth muscle of the corpora cavernosa (CC) and determines the functional state of the penis. Noradrenaline contracts both CC and penile vessels via stimulation of α₁-adrenoceptors. Neurogenic NO is considered the most important factor for relaxation of penile vessels and CC. The role of other mediators, released from nerves or endothelium, has not been definitely established. Erectile dysfunction (ED), defined as the "inability to achieve or maintain an erection adequate for sexual satisfaction," may have multiple causes and can be classified as psychogenic, vasculogenic or organic, neurologic, and endocrinologic. Many patients with ED respond well to the pharmacological treatments that are currently available, but there are still groups of patients in whom the response is unsatisfactory. The drugs used are able to substitute, partially or completely, the malfunctioning endogenous mechanisms that control penile erection. Most drugs have a direct action on penile tissue facilitating penile smooth muscle relaxation, including oral phosphodiesterase inhibitors and intracavernosal injections of prostaglandin E₁. Irrespective of the underlying cause, these drugs are effective in the majority of cases. Drugs with a central site of action have so far not been very successful. There is a need for therapeutic alternatives. This requires identification of new therapeutic targets and design of new approaches. Research in the field is expanding, and several promising new targets for future drugs have been identified.

                Author and article information

                Journal
                FASEB J.
                FASEB journal : official publication of the Federation of American Societies for Experimental Biology
                FASEB
                1530-6860
                0892-6638
                Jan 2014
                : 28
                : 1
                Affiliations
                [1 ] 1Department of Urology, The Johns Hopkins Hospital, 600 N. Wolfe St., Marburg 407, Baltimore, MD 21287-2411, USA. aburnett@jhmi.edu.
                Article
                fj.13-228817
                10.1096/fj.13-228817
                4046159
                24076963
                dd38d869-cd3e-40ad-8d1d-4378fb81d65e
                History

                NO bioavailability,oxidative stress,sickle cell
                NO bioavailability, oxidative stress, sickle cell

                Comments

                Comment on this article

                Related Documents Log