65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Patterns and ecosystem consequences of shark declines in the ocean : Ecosystem consequences of shark declines

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Whereas many land predators disappeared before their ecological roles were studied, the decline of marine apex predators is still unfolding. Large sharks in particular have experienced rapid declines over the last decades. In this study, we review the documented changes in exploited elasmobranch communities in coastal, demersal, and pelagic habitats, and synthesize the effects of sharks on their prey and wider communities. We show that the high natural diversity and abundance of sharks is vulnerable to even light fishing pressure. The decline of large predatory sharks reduces natural mortality in a range of prey, contributing to changes in abundance, distribution, and behaviour of small elasmobranchs, marine mammals, and sea turtles that have few other predators. Through direct predation and behavioural modifications, top-down effects of sharks have led to cascading changes in some coastal ecosystems. In demersal and pelagic communities, there is increasing evidence of mesopredator release, but cascading effects are more hypothetical. Here, fishing pressure on mesopredators may mask or even reverse some ecosystem effects. In conclusion, large sharks can exert strong top-down forces with the potential to shape marine communities over large spatial and temporal scales. Yet more empirical evidence is needed to test the generality of these effects throughout the ocean.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Depletion, degradation, and recovery potential of estuaries and coastal seas.

          Estuarine and coastal transformation is as old as civilization yet has dramatically accelerated over the past 150 to 300 years. Reconstructed time lines, causes, and consequences of change in 12 once diverse and productive estuaries and coastal seas worldwide show similar patterns: Human impacts have depleted >90% of formerly important species, destroyed >65% of seagrass and wetland habitat, degraded water quality, and accelerated species invasions. Twentieth-century conservation efforts achieved partial recovery of upper trophic levels but have so far failed to restore former ecosystem structure and function. Our results provide detailed historical baselines and quantitative targets for ecosystem-based management and marine conservation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predicting ecological consequences of marine top predator declines.

            Recent studies document unprecedented declines in marine top predators that can initiate trophic cascades. Predicting the wider ecological consequences of these declines requires understanding how predators influence communities by inflicting mortality on prey and inducing behavioral modifications (risk effects). Both mechanisms are important in marine communities, and a sole focus on the effects of predator-inflicted mortality might severely underestimate the importance of predators. We outline direct and indirect consequences of marine predator declines and propose an integrated predictive framework that includes risk effects, which appear to be strongest for long-lived prey species and when resources are abundant. We conclude that marine predators should be managed for the maintenance of both density- and risk-driven ecological processes, and not demographic persistence alone.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Predator interactions, mesopredator release and biodiversity conservation.

              There is growing recognition of the important roles played by predators in regulating ecosystems and sustaining biodiversity. Much attention has focused on the consequences of predator-regulation of herbivore populations, and associated trophic cascades. However apex predators may also control smaller 'mesopredators' through intraguild interactions. Removal of apex predators can result in changes to intraguild interactions and outbreaks of mesopredators ('mesopredator release'), leading in turn to increased predation on smaller prey. Here we provide a review and synthesis of studies of predator interactions, mesopredator release and their impacts on biodiversity. Mesopredator suppression by apex predators is widespread geographically and taxonomically. Apex predators suppress mesopredators both by killing them, or instilling fear, which motivates changes in behaviour and habitat use that limit mesopredator distribution and abundance. Changes in the abundance of apex predators may have disproportionate (up to fourfold) effects on mesopredator abundance. Outcomes of interactions between predators may however vary with resource availability, habitat complexity and the complexity of predator communities. There is potential for the restoration of apex predators to have benefits for biodiversity conservation through moderation of the impacts of mesopredators on their prey, but this requires a whole-ecosystem view to avoid unforeseen negative effects. 'Nothing has changed since I began. My eye has permitted no change. I am going to keep things like this.' From 'Hawk Roosting', by Ted Hughes.
                Bookmark

                Author and article information

                Journal
                Ecology Letters
                Wiley
                1461023X
                14610248
                May 2010
                May 2010
                : no
                Article
                10.1111/j.1461-0248.2010.01489.x
                20528897
                dd401c39-bbd8-4e85-945d-4c21cc94f66f
                © 2010

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article