13
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Isoflavones, their Glycosides and Glycoconjugates. Synthesis and Biological Activity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glycosylation of small biologically active molecules, either of natural or synthetic origin, has a profound impact on their solubility, stability, and bioactivity, making glycoconjugates attractive compounds as therapeutic agents or nutraceuticals. A large proportion of secondary metabolites, including flavonoids, occur in plants as glycosides, which adds to the molecular diversity that is much valued in medicinal chemistry studies. The subsequent growing market demand for glycosidic natural products has fueled the development of various chemical and biotechnological methods of glycosides preparation. The review gives an extensive overview of the processes of the synthesis of isoflavones and discusses recently developed major routes towards isoflavone-sugar formation processes. Special attention is given to the derivatives of genistein, the main isoflavone recognized as a useful lead in several therapeutic categories, with particular focus on anticancer drug design. The utility of chemical glycosylations as well as glycoconjugates preparation is discussed in some theoretical as well as practical aspects. Since novel approaches to chemical glycosylations and glycoconjugations are abundant and many of them proved suitable for derivatization of polyphenols a new body of evidence has emerged, indicating that sugar moiety can play a much more significant role, when attached to a pharmacophore, then being a mere “solubilizer”. In many cases, it has been demonstrated that semisynthetic glycoconjugates are much more potent cytostatic and cytotoxic agents than reference isoflavones. Moreover, the newly designed glycosides or glycoside mimics can act through different mechanisms than the parent active molecule.

          Related collections

          Most cited references164

          • Record: found
          • Abstract: found
          • Article: not found

          The biochemistry and medical significance of the flavonoids.

          Flavonoids are plant pigments that are synthesised from phenylalanine, generally display marvelous colors known from flower petals, mostly emit brilliant fluorescence when they are excited by UV light, and are ubiquitous to green plant cells. The flavonoids are used by botanists for taxonomical classification. They regulate plant growth by inhibition of the exocytosis of the auxin indolyl acetic acid, as well as by induction of gene expression, and they influence other biological cells in numerous ways. Flavonoids inhibit or kill many bacterial strains, inhibit important viral enzymes, such as reverse transcriptase and protease, and destroy some pathogenic protozoans. Yet, their toxicity to animal cells is low. Flavonoids are major functional components of many herbal and insect preparations for medical use, e.g., propolis (bee's glue) and honey, which have been used since ancient times. The daily intake of flavonoids with normal food, especially fruit and vegetables, is 1-2 g. Modern authorised physicians are increasing their use of pure flavonoids to treat many important common diseases, due to their proven ability to inhibit specific enzymes, to simulate some hormones and neurotransmitters, and to scavenge free radicals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advances in flavonoid research since 1992.

            Some of the recent advances in flavonoid research are reviewed. The role of anthocyanins and flavones in providing stable blue flower colours in the angiosperms is outlined. The contribution of leaf flavonoids to UV-B protection in plants is critically discussed. Advances in understanding the part played by flavonoids in warding off microbial infection and protecting plants from herbivory are described. The biological properties of flavonoids are considered in an evaluation of the medicinal and nutritional values of these compounds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dietary flavonoids: effects on xenobiotic and carcinogen metabolism.

              Flavonoids are present in fruits, vegetables and beverages derived from plants (tea, red wine), and in many dietary supplements or herbal remedies including Ginkgo Biloba, Soy Isoflavones, and Milk Thistle. Flavonoids have been described as health-promoting, disease-preventing dietary supplements, and have activity as cancer preventive agents. Additionally, they are extremely safe and associated with low toxicity, making them excellent candidates for chemopreventive agents. The cancer protective effects of flavonoids have been attributed to a wide variety of mechanisms, including modulating enzyme activities resulting in the decreased carcinogenicity of xenobiotics. This review focuses on the flavonoid effects on cytochrome P450 (CYP) enzymes involved in the activation of procarcinogens and phase II enzymes, largely responsible for the detoxification of carcinogens. A number of naturally occurring flavonoids have been shown to modulate the CYP450 system, including the induction of specific CYP isozymes, and the activation or inhibition of these enzymes. Some flavonoids alter CYPs through binding to the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, acting as either AhR agonists or antagonists. Inhibition of CYP enzymes, including CYP 1A1, 1A2, 2E1 and 3A4 by competitive or mechanism-based mechanisms also occurs. Flavones (chrysin, baicalein, and galangin), flavanones (naringenin) and isoflavones (genistein, biochanin A) inhibit the activity of aromatase (CYP19), thus decreasing estrogen biosynthesis and producing antiestrogenic effects, important in breast and prostate cancers. Activation of phase II detoxifying enzymes, such as UDP-glucuronyl transferase, glutathione S-transferase, and quinone reductase by flavonoids results in the detoxification of carcinogens and represents one mechanism of their anticarcinogenic effects. A number of flavonoids including fisetin, galangin, quercetin, kaempferol, and genistein represent potent non-competitive inhibitors of sulfotransferase 1A1 (or P-PST); this may represent an important mechanism for the chemoprevention of sulfation-induced carcinogenesis. Importantly, the effects of flavonoids on enzymes are generally dependent on the concentrations of flavonoids present, and the different flavonoids ingested. Due to the low oral bioavailability of many flavonoids, the concentrations achieved in vivo following dietary administration tend to be low, and may not reflect the concentrations tested under in vitro conditions; however, this may not be true following the ingestion of herbal preparations when much higher plasma concentrations may be obtained. Effects will also vary with the tissue distribution of enzymes, and with the species used in testing since differences between species in enzyme activities also can be substantial. Additionally, in humans, marked interindividual variability in drug-metabolizing enzymes occurs as a result of genetic and environmental factors. This variability in xenobiotic metabolizing enzymes and the effect of flavonoid ingestion on enzyme expression and activity can contribute to the varying susceptibility different individuals have to diseases such as cancer. As well, flavonoids may also interact with chemotherapeutic drugs used in cancer treatment through the induction or inhibition of their metabolism.
                Bookmark

                Author and article information

                Journal
                Curr Org Chem
                Curr Org Chem
                COC
                Current Organic Chemistry
                Bentham Science Publishers
                1385-2728
                1875-5348
                January 2017
                January 2017
                : 21
                : 3
                : 218-235
                Affiliations
                [1 ]Silesian Technical University, Department of Chemistry, Krzywoustego 4, 44-100 Gliwice, Poland;
                [2 ]Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, Poland;
                [3 ]Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze AK 15, 44-100 Gliwice, Poland
                Author notes
                [* ]Address correspondence to this author at the Silesian Technical University, Department of Chemistry, Krzywoustego 4, 44-100 Gliwice, Poland;, E-mail: wieslaw.szeja@ 123456adres.pl
                Article
                COC-21-218
                10.2174/1385272820666160928120822
                5427819
                28553156
                dd46b33f-2d02-43bc-8c7d-0722d902bec9
                © 2017 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 05 May 2016
                : 20 July 2016
                : 22 September 2016
                Categories
                Article

                chemical glycosylations,isoflavone glycoconjugates,isoflavones

                Comments

                Comment on this article