5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Early activation of CD4+ and CD8+ T lymphocytes by myelin basic protein in subjects with MS

      research-article
       
      Journal of Translational Medicine
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Multiple sclerosis is the most common autoimmune disorder affecting the central nervous system. In this study, whole blood samples were analyzed for activation capacity and the activatability of CD4+ and CD8+ T-lymphocytes by human total myelin basic protein (MBP), human MBP 104–118 fragment, and guinea pig MBP 68–82 fragment.

          Methods

          Whole blood samples from healthy human subjects were compared with samples from patients with multiple sclerosis (MS). In particular, the expression of CD69, a surface marker of T-lymphocyte activity, was measured via flow cytometry before and after 14 h of incubation with human total MBP, MBP 104–118 fragment and/or guinea pig MBP 68–82 fragment. The results were compared between 15 patients with MS and 15 healthy subjects.

          Results

          In response to all three MBP forms, CD4+ and CD8+ T-lymphocytes from patients with MS demonstrated greater activatability than those from healthy subjects. These results indicate that in patients with MS, latent pre-activation to MBP epitopes results in an increased activation capacity of T-lymphocytes.

          Conclusion

          This effect may occur because immunization against MBP (at least in a subset of patients) plays a pathophysiological role in MS pathogenesis. Alternatively, this result may represent a non-specific, bystander autoimmune phenomenon.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Immunity to intracellular bacteria.

          S Kaufmann (1992)
          Intracellular bacteria are endowed with the capacity to survive and replicate inside mononuclear phagocytes (MP) and, sometimes, within certain other host cells. MP are potent effectors cells that are able to engulf and kill many bacterial invaders. Therefore, intracellular bacteria had to exploit potent evasion mechanisms that allow their survival in this hostile environment. At the early phase, natural killer cells activate antibacterial defense mechanisms. During intracellular persistence, microbial proteins are processed and presented, thus initiating T cell activation. By secreting interleukins, CD4 alpha/beta TH1 cells activate MP, converting them from a habitat to a potent effector cell; TH2-dependent activities seem to be of minor importance. Cytolytic CD8 T cells represent a further element of protection. In the case of Listeria monocytogenes, the gene products responsible for virulence and for the introduction of antigens into the MHC class I pathway are being characterized. Increasing evidence points to a role of gamma/delta T lymphocytes in antibacterial immunity, although their precise function remains to be elucidated. Protection in the host is a local event focussed on granulomatous lesions. MP accumulate at the site of microbial growth and become activated through the CD4 T cell-interleukin-MP axis. Lysis of incapacitated MP and other host cells by CD8 T cells allows release and subsequent uptake by more efficient phagocytes, thus contributing to host protection. At the same time, lysis of host cells promotes microbial dissemination and causes tissue injury, which represent pathogenic aspects of the same mechanism. Research on the immune response against intracellular bacteria not only helps us to better understand how the immune system deals with "viable antigens" in constant trans-mutation, it also forms the basis for the rational design of control measures for major health problems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            On immunological memory.

            Immunological memory is a hallmark of the immune system. Evolution can teach us which effector arms of immunological memory are biologically relevant against which virus. Antibodies appear to be the critical protective mechanism against cytopathic viruses. Since these viruses cause cell damage and disease directly, particularly in the absence of an immune response, mothers protect their offspring during a critical immunoincompetent period (a consequence of MHC- restricted T cell recognition) by passive transfer of neutralizing antibodies. In contrast, CTL appear to be the crucial effector mechanism against noncytopathic viruses. Since MHC polymorphism has made vertical transmission of T cell memory impossible, immunoincompetent offspring are not, and need not be, protected against such noncytopathic viruses. During the primary response and again during secondary infection, the most important function of CTL is to eliminate noncytopathic viruses, which may otherwise cause lethal immunopathology. Increased precursor frequencies of B and T cells appear to remain in the host independent of antigen persistence. However, in order to protect against cytopathic viruses, memory B cells have to produce antibody to maintain protective elevated levels of antibody; B cell differentiation into plasma cells is driven by persisting antigen. Similarly, to protect against infection with a noncytopathic virus, CTL have to recirculate through peripheral organs. Activation and capacity to emigrate into solid tissues as well as cytolytic effector function are also dependent upon, and driven by, persisting antigen. Because no convincing evidence is available yet of the existence of identifiable B or T cells with specialized memory characteristics, the phenotype of immunological memory correlates best with antigen-driven activation of low frequency effector T cells and plasma cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              On natural and artificial vaccinations.

              This review summarizes the general parameters of cell- and antibody-mediated immune protection and the basic mechanisms responsible for what we call immunological memory. From this basis, the various successes and difficulties of vaccines are evaluated with respect to the role of antigen in maintaining protective immunity. Based on the fact that in humans during the first 12-48 months maternal antibodies from milk and serum protect against classical acute childhood and other infections, the concept is developed that maternal antibodies attenuate most infections of babies and infants and turn them into effective vaccines. If this "natural vaccination" under passive protective conditions does not occur, acute childhood diseases may be severe, unless infants are actively vaccinated with conventional vaccines early enough, i.e., in synchronization with the immune system's maturation. Although vaccines are available against the classical childhood diseases, they are not available for many seemingly milder childhood infections such as gastrointestinal and respiratory infections; these may eventually trigger immunopathological diseases. These changing balances between humans and infections caused by changes in nursing habits but also in hygiene levels may well be involved in changing disease patterns including increased frequencies of certain autoimmune and degenerative diseases.
                Bookmark

                Author and article information

                Contributors
                borros.arneth@klinchemie.med.uni-giessen.de
                Journal
                J Transl Med
                J Transl Med
                Journal of Translational Medicine
                BioMed Central (London )
                1479-5876
                2 November 2015
                2 November 2015
                2015
                : 13
                : 341
                Affiliations
                Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
                Article
                715
                10.1186/s12967-015-0715-6
                4630877
                26526848
                dd4a00ea-f4b3-4d89-bc4e-5ab759cf523d
                © Arneth. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 27 March 2015
                : 26 October 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Medicine
                Medicine

                Comments

                Comment on this article