24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TNF-related apoptosis-inducing ligand (TRAIL) exerts therapeutic efficacy for the treatment of pneumococcal pneumonia in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neutrophil-derived TRAIL induces apoptosis of alveolar macrophages, limiting the spread of S. pneumoniae infection.

          Abstract

          Apoptotic death of alveolar macrophages observed during lung infection with Streptococcus pneumoniae is thought to limit overwhelming lung inflammation in response to bacterial challenge. However, the underlying apoptotic death mechanism has not been defined. Here, we examined the role of the TNF superfamily member TNF-related apoptosis-inducing ligand (TRAIL) in S. pneumoniae–induced macrophage apoptosis, and investigated the potential benefit of TRAIL-based therapy during pneumococcal pneumonia in mice. Compared with WT mice, Trail −/− mice demonstrated significantly decreased lung bacterial clearance and survival in response to S. pneumoniae, which was accompanied by significantly reduced apoptosis and caspase 3 cleavage but rather increased necrosis in alveolar macrophages. In WT mice, neutrophils were identified as a major source of intraalveolar released TRAIL, and their depletion led to a shift from apoptosis toward necrosis as the dominant mechanism of alveolar macrophage cell death in pneumococcal pneumonia. Therapeutic application of TRAIL or agonistic anti-DR5 mAb (MD5-1) dramatically improved survival of S. pneumoniae–infected WT mice. Most importantly, neutropenic mice lacking neutrophil-derived TRAIL were protected from lethal pneumonia by MD5-1 therapy. We have identified a previously unrecognized mechanism by which neutrophil-derived TRAIL induces apoptosis of DR5-expressing macrophages, thus promoting early bacterial killing in pneumococcal pneumonia. TRAIL-based therapy in neutropenic hosts may represent a novel antibacterial treatment option.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical and economic burden of community-acquired pneumonia among adults in Europe.

          It is difficult to determine the impact of community-acquired pneumonia (CAP) in Europe, because precise data are scarce. Mortality attributable to CAP varies widely between European countries and with the site of patient management. This review analysed the clinical and economic burden, aetiology and resistance patterns of CAP in European adults. All primary articles reporting studies in Europe published from January 1990 to December 2007 addressing the clinical and economic burden of CAP in adults were included. A total of 2606 records were used to identify primary studies. CAP incidence varied by country, age and gender, and was higher in individuals aged ≥65 years and in men. Streptococcus pneumoniae was the most common agent isolated. Mortality varied from <1% to 48% and was associated with advanced age, co-morbid conditions and CAP severity. Antibiotic resistance was seen in all pathogens associated with CAP. There was an increase in antibiotic-resistant strains, but resistance was not related to mortality. CAP was associated with high rates of hospitalisation and length of hospital stay. The review showed that the clinical and economic burden of CAP in Europe is high. CAP has considerable long-term effects on quality of life, and long-term prognosis is worse in patients with pneumococcal pneumonia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis.

            Two different forms of death are commonly observed when Mycobacterium tuberculosis (Mtb)-infected macrophages die: (i) necrosis, a death modality defined by cell lysis and (ii) apoptosis, a form of death that maintains an intact plasma membrane. Necrosis is a mechanism used by bacteria to exit the macrophage, evade host defenses, and spread. In contrast, apoptosis of infected macrophages is associated with diminished pathogen viability. Apoptosis occurs when tumor necrosis factor activates the extrinsic death domain pathway, leading to caspase-8 activation. In addition, mitochondrial outer membrane permeabilization leading to activation of the intrinsic apoptotic pathway is required. Both pathways lead to caspase-3 activation, which results in apoptosis. We have recently demonstrated that during mycobacterial infection, cell death is regulated by the eicosanoids, prostaglandin E(2) (proapoptotic) and lipoxin (LX)A(4) (pronecrotic). Although PGE(2) protects against necrosis, virulent Mtb induces LXA(4) and inhibits PGE(2) production. Under such conditions, mitochondrial inner membrane damage leads to macrophage necrosis. Thus, virulent Mtb subverts eicosanoid regulation of cell death to foil innate defense mechanisms of the macrophage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alveolar macrophage apoptosis contributes to pneumococcal clearance in a resolving model of pulmonary infection.

              The role of alveolar macrophages (AM) in host defense against pulmonary infection has been difficult to establish using in vivo models. This may reflect a reliance on models of fulminant infection. To establish a unique model of resolving infection, with which to address the function of AM, C57BL/6 mice received low-dose intratracheal administration of pneumococci. Administration of low doses of pneumococci produced a resolving model of pulmonary infection characterized by clearance of bacteria without features of pneumonia. AM depletion in this model significantly increased bacterial outgrowth in the lung. Interestingly, a significant increase in the number of apoptotic AM was noted with the low-dose infection as compared with mock infection. Caspase inhibition in this model decreased AM apoptosis and increased the number of bacteremic mice, indicating a novel role for caspase activation in pulmonary innate defense against pneumococci. These results suggest that AM play a key role in clearance of bacteria from the lung during subclinical infection and that induction of AM apoptosis contributes to the microbiologic host defense against pneumococci.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                22 October 2012
                : 209
                : 11
                : 1937-1952
                Affiliations
                [1 ]Department of Experimental Pneumology and [2 ]Clinic for Pneumology, Hannover School of Medicine, Hannover 30625, Germany
                [3 ]Department of Urology, University of Minnesota, Minneapolis, MN 55455
                Author notes
                CORRESPONDENCE Ulrich A. Maus: maus.ulrich@ 123456mh-hannover.de

                K. Steinwede and S. Henken contributed equally to this paper.

                Article
                20120983
                10.1084/jem.20120983
                3478925
                23071253
                dd4e4517-e8ed-4897-ab6c-3e7c0b01d2c8
                © 2012 Steinwede et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 8 May 2012
                : 31 August 2012
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article