2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Parasitoid Distribution and Parasitism of the Fall Armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) in Different Maize Producing Regions of Uganda

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          The fall armyworm (FAW), a native of the Americas that was confirmed in Africa in 2016, has been reported to cause substantial damage to maize and sorghum in all sub-Saharan African countries. In Uganda, farmers rely mainly on synthetic insecticides, which can be harmful to humans, the environment, and significantly increase the cost of production. To lessen the disadvantages associated with synthetic insecticides, the use of parasitoids could be exploited. Fall armyworm parasitoids have been reported from the Americas, Asia, and some African countries, but not from Uganda. In this study, we aimed to determine the identity and distribution of FAW parasitoids in Uganda. We found 13 species of parasitoids attacking FAW in the surveyed locations. These included 11 species of insects in the wasp order and two in the fly order. Four of these are wasps that attack the eggs of FAW, while the remaining seven wasps and two fly species attack the larvae of FAW. Two wasp genera ( Chelonus and Coccygidium spp.) were more abundant and widely distributed when compared with the other parasitoid species. All parasitoids contributed to an average of 9.2% FAW larval mortality rate across the study locations.

          Abstract

          The fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) has successfully invaded Africa, where it has significantly impacted maize and sorghum production. Management of FAW in Africa predominantly relies on synthetic insecticides, which are expensive, and negatively impact the environment and beneficial insects. We, therefore, conducted field surveys in Uganda in 2017 and 2019 to identify egg and larval parasitoids of FAW for possible use in integrated pest management (IPM) programs. Parasitoids were identified by their mitochondrial DNA cytochrome c oxidase subunit 1 (mtCOI) gene sequences. We identified 13 parasitoid species belonging to three families of Hymenoptera: Platygastridae, Braconidae and Ichneumonidae, as well as one Dipteran family (Tachinidae). Coccygidium spp. and Chelonus bifoveolatus were the most abundant and widely distributed parasitoids. Overall, parasitism averaged 9.2% and ranged from 3.1% to 50% in 2017, and 0.8% to 33% in 2019. Parasitism by Sturmiopsis parasitica, Diolcogaster sp., and Cotesia flavipes on FAW in maize crops are reported for the first time. Our results suggest high biological diversity of FAW parasitoids, which should be exploited in the IPM of the FAW in Uganda.

          Related collections

          Most cited references 84

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability

          We report a major update of the MAFFT multiple sequence alignment program. This version has several new features, including options for adding unaligned sequences into an existing alignment, adjustment of direction in nucleotide alignment, constrained alignment and parallel processing, which were implemented after the previous major update. This report shows actual examples to explain how these features work, alone and in combination. Some examples incorrectly aligned by MAFFT are also shown to clarify its limitations. We discuss how to avoid misalignments, and our ongoing efforts to overcome such limitations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data

            Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.

               K Katoh (2002)
              A multiple sequence alignment program, MAFFT, has been developed. The CPU time is drastically reduced as compared with existing methods. MAFFT includes two novel techniques. (i) Homo logous regions are rapidly identified by the fast Fourier transform (FFT), in which an amino acid sequence is converted to a sequence composed of volume and polarity values of each amino acid residue. (ii) We propose a simplified scoring system that performs well for reducing CPU time and increasing the accuracy of alignments even for sequences having large insertions or extensions as well as distantly related sequences of similar length. Two different heuristics, the progressive method (FFT-NS-2) and the iterative refinement method (FFT-NS-i), are implemented in MAFFT. The performances of FFT-NS-2 and FFT-NS-i were compared with other methods by computer simulations and benchmark tests; the CPU time of FFT-NS-2 is drastically reduced as compared with CLUSTALW with comparable accuracy. FFT-NS-i is over 100 times faster than T-COFFEE, when the number of input sequences exceeds 60, without sacrificing the accuracy.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Insects
                Insects
                insects
                Insects
                MDPI
                2075-4450
                29 January 2021
                February 2021
                : 12
                : 2
                Affiliations
                [1 ]National Crops Resources Research Institute (NaCRRI), Kampala P.O. Box 7084, Uganda; stellaadumo@ 123456yahoo.com (S.A.A.); opio.moses@ 123456yahoo.com (M.O.); kanyesigyedalton@ 123456gmail.com (D.K.)
                [2 ]Ministry of Agriculture, Animal Industry and Fisheries, Entebbe P.O. Box 102, Uganda; hnopolot@ 123456gmail.com
                [3 ]Black Mountain Laboratories, Clunies Ross Street, Commonwealth Scientific and Industrial Research Organisation, Canberra 2601, Australia; Weetek.Tay@ 123456csiro.au
                Author notes
                Article
                insects-12-00121
                10.3390/insects12020121
                7912086
                33573080
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Comments

                Comment on this article